Critical biomarkers for responsive deep brain stimulation and responsive focal cortex stimulation in epilepsy field

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Zhikai Yu , Binghao Yang , Penghu Wei , Hang Xu , Yongzhi Shan , Xiaotong Fan , Huaqiang Zhang , Changming Wang , Jingjing Wang , Shan Yu , Guoguang Zhao
{"title":"Critical biomarkers for responsive deep brain stimulation and responsive focal cortex stimulation in epilepsy field","authors":"Zhikai Yu ,&nbsp;Binghao Yang ,&nbsp;Penghu Wei ,&nbsp;Hang Xu ,&nbsp;Yongzhi Shan ,&nbsp;Xiaotong Fan ,&nbsp;Huaqiang Zhang ,&nbsp;Changming Wang ,&nbsp;Jingjing Wang ,&nbsp;Shan Yu ,&nbsp;Guoguang Zhao","doi":"10.1016/j.fmre.2024.05.018","DOIUrl":null,"url":null,"abstract":"<div><div>To derive critical signal features from intracranial electroencephalograms of epileptic patients in order to design instructions for feedback-type electrical stimulation systems. The Detrended Fluctuation Analysis (DFA) exponent is chosen as the classification exponent, and the disparities between indicators representing distinct seizure states and the classification efficacy of rudimentary machine learning models are computed. The DFA exponent exhibited a statistically significant variation among the pre-ictal, ictal period, and post-ictal stages. The Linear Discriminant Analysis model demonstrates the highest accuracy among the three basic machine learning models, whereas the Naive Bayesian model necessitates the least amount of computational and storage space. The set of DFA exponents is employed as an intermediary variable in the machine learning process. The resultant model possesses the capability to function as a feedback trigger program for electrical stimulation systems of the feedback variety, specifically within the domain of neural modulation in epilepsy.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 1","pages":"Pages 103-114"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824002656","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

To derive critical signal features from intracranial electroencephalograms of epileptic patients in order to design instructions for feedback-type electrical stimulation systems. The Detrended Fluctuation Analysis (DFA) exponent is chosen as the classification exponent, and the disparities between indicators representing distinct seizure states and the classification efficacy of rudimentary machine learning models are computed. The DFA exponent exhibited a statistically significant variation among the pre-ictal, ictal period, and post-ictal stages. The Linear Discriminant Analysis model demonstrates the highest accuracy among the three basic machine learning models, whereas the Naive Bayesian model necessitates the least amount of computational and storage space. The set of DFA exponents is employed as an intermediary variable in the machine learning process. The resultant model possesses the capability to function as a feedback trigger program for electrical stimulation systems of the feedback variety, specifically within the domain of neural modulation in epilepsy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信