Classification and diagnosis of cervical lesions based on colposcopy images using deep fully convolutional networks: A man-machine comparison cohort study

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Binhua Dong , Huifeng Xue , Ye Li , Ping Li , Jiancui Chen , Tao Zhang , Lihua Chen , Diling Pan , Peizhong Liu , Pengming Sun
{"title":"Classification and diagnosis of cervical lesions based on colposcopy images using deep fully convolutional networks: A man-machine comparison cohort study","authors":"Binhua Dong ,&nbsp;Huifeng Xue ,&nbsp;Ye Li ,&nbsp;Ping Li ,&nbsp;Jiancui Chen ,&nbsp;Tao Zhang ,&nbsp;Lihua Chen ,&nbsp;Diling Pan ,&nbsp;Peizhong Liu ,&nbsp;Pengming Sun","doi":"10.1016/j.fmre.2022.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>Colposcopy is an important technique in the diagnosis of cervical cancer. The development of computer-aided diagnosis methods can mitigate the shortage of colposcopists and improve the accuracy and efficiency of colposcopy examinations in China. This study proposes the Dense-U-Net model for colposcopy image recognition. This was a man–machine comparison cohort study. It presents a novel artificial intelligence (AI) model for the diagnosis of cervical lesions through colposcopy images using a Dense-U-Net image semantic segmentation algorithm. The Dense-U-Net model was created by applying the methods of “deepening the network structure,” “applying dropout” and “max pooling.” Moreover, image-based and population-based diagnostic performances of the AI algorithm and physicians with different levels of specialist experience were compared. In total, 2,475 participants were recruited, and 13,084 colposcopy images were included in this study. The diagnostic accuracy of the Dense-U-Net model increased significantly with increasing colposcopy images per patient. As the number of images in the training set increased, the diagnostic accuracy of the Dense-U-Net model for cervical intraepithelial neoplasm 3 or worse (CIN3+) diagnosis increased (<em>P</em> = 0.035). The rate of diagnostic accuracy (0.89 vs 0.85, <em>P</em> &lt; 0.001) of CIN3+ lesions using the Dense-U-Net model was higher than that of expert colposcopists, and the missed diagnosis (0.06 vs 0.07, <em>P</em> = 0.002) and false positive (0.05 vs 0.08, <em>P</em> &lt; 0.001) were lower. Moreover, Dense-U-Net is more accurate in diagnosing the type III cervical transformation zone, which is difficult to diagnose by experts (<em>P</em> &lt; 0.001). The Dense-U-Net model also showed higher diagnostic accuracy for CIN3+ in an independent test set (<em>P</em> &lt; 0.001). To diagnose the same 870 test images, the Dense-U-Net system took 1.76 ± 0.09 min, while the expert, senior, and junior colposcopists took 716.3 ± 49.76, 892.1 ± 92.30, and 3034.7 ± 259.51 min, respectively. The study successfully built a reliable, quick, and effective Dense-U-Net model to assist with colposcopy examinations.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 1","pages":"Pages 419-428"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822004319","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Colposcopy is an important technique in the diagnosis of cervical cancer. The development of computer-aided diagnosis methods can mitigate the shortage of colposcopists and improve the accuracy and efficiency of colposcopy examinations in China. This study proposes the Dense-U-Net model for colposcopy image recognition. This was a man–machine comparison cohort study. It presents a novel artificial intelligence (AI) model for the diagnosis of cervical lesions through colposcopy images using a Dense-U-Net image semantic segmentation algorithm. The Dense-U-Net model was created by applying the methods of “deepening the network structure,” “applying dropout” and “max pooling.” Moreover, image-based and population-based diagnostic performances of the AI algorithm and physicians with different levels of specialist experience were compared. In total, 2,475 participants were recruited, and 13,084 colposcopy images were included in this study. The diagnostic accuracy of the Dense-U-Net model increased significantly with increasing colposcopy images per patient. As the number of images in the training set increased, the diagnostic accuracy of the Dense-U-Net model for cervical intraepithelial neoplasm 3 or worse (CIN3+) diagnosis increased (P = 0.035). The rate of diagnostic accuracy (0.89 vs 0.85, P < 0.001) of CIN3+ lesions using the Dense-U-Net model was higher than that of expert colposcopists, and the missed diagnosis (0.06 vs 0.07, P = 0.002) and false positive (0.05 vs 0.08, P < 0.001) were lower. Moreover, Dense-U-Net is more accurate in diagnosing the type III cervical transformation zone, which is difficult to diagnose by experts (P < 0.001). The Dense-U-Net model also showed higher diagnostic accuracy for CIN3+ in an independent test set (P < 0.001). To diagnose the same 870 test images, the Dense-U-Net system took 1.76 ± 0.09 min, while the expert, senior, and junior colposcopists took 716.3 ± 49.76, 892.1 ± 92.30, and 3034.7 ± 259.51 min, respectively. The study successfully built a reliable, quick, and effective Dense-U-Net model to assist with colposcopy examinations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信