Metabolites derived from medicinal plants modulating voltage-gated sodium channel activity: A systematic review

Q3 Pharmacology, Toxicology and Pharmaceutics
José Luis Estela-Zape , Mayra Liliana Pizarro-Loaiza , Gabriel Arteaga , Santiago Castaño , Leonardo Fierro
{"title":"Metabolites derived from medicinal plants modulating voltage-gated sodium channel activity: A systematic review","authors":"José Luis Estela-Zape ,&nbsp;Mayra Liliana Pizarro-Loaiza ,&nbsp;Gabriel Arteaga ,&nbsp;Santiago Castaño ,&nbsp;Leonardo Fierro","doi":"10.1016/j.phyplu.2024.100724","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Voltage-gated sodium channels (Nav) are critical for generating action potentials in neuronal and muscle tissues. Dysfunction of these channels is associated with neurological disorders such as epilepsy, neuropathic pain, and myopathies. Although plant-derived compounds have shown promise in modulating Nav channels, the molecular mechanisms remain insufficiently understood. This systematic review aims to identify plant metabolites that affect Nav channel activity, with the potential for developing more selective and safer treatments.</div></div><div><h3>Methods</h3><div>The review followed PRISMA 2020 guidelines. A search was conducted in three databases (PubMed, Scopus, Web of Science) using keywords related to sodium channels and medicinal plants. Studies were selected based on predefined eligibility criteria and evaluated through a standard critical appraisal process by two reviewers.</div></div><div><h3>Results</h3><div>Six studies were included, examining the effects of plant metabolites on Nav channels. Isoquinoline alkaloids from <em>Corydalis yanhusuo, hangeshashinto</em>, osthol, and cannabidiol inhibited Na+ currents in cell models, primarily affecting Nav1.7 and Nav1.5. These compounds exhibited analgesic, antiarrhythmic, and neuroprotective properties, suggesting their therapeutic potential for disorders linked to Nav channel dysfunction.</div></div><div><h3>Conclusions</h3><div>Plant-derived metabolites that modulate Nav channels present significant therapeutic potential for treating neurological disorders, offering more targeted treatments with fewer side effects. However, further research is needed to clarify the underlying molecular mechanisms and validate these compounds through preclinical and clinical trials.</div></div>","PeriodicalId":34599,"journal":{"name":"Phytomedicine Plus","volume":"5 1","pages":"Article 100724"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667031324001982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Voltage-gated sodium channels (Nav) are critical for generating action potentials in neuronal and muscle tissues. Dysfunction of these channels is associated with neurological disorders such as epilepsy, neuropathic pain, and myopathies. Although plant-derived compounds have shown promise in modulating Nav channels, the molecular mechanisms remain insufficiently understood. This systematic review aims to identify plant metabolites that affect Nav channel activity, with the potential for developing more selective and safer treatments.

Methods

The review followed PRISMA 2020 guidelines. A search was conducted in three databases (PubMed, Scopus, Web of Science) using keywords related to sodium channels and medicinal plants. Studies were selected based on predefined eligibility criteria and evaluated through a standard critical appraisal process by two reviewers.

Results

Six studies were included, examining the effects of plant metabolites on Nav channels. Isoquinoline alkaloids from Corydalis yanhusuo, hangeshashinto, osthol, and cannabidiol inhibited Na+ currents in cell models, primarily affecting Nav1.7 and Nav1.5. These compounds exhibited analgesic, antiarrhythmic, and neuroprotective properties, suggesting their therapeutic potential for disorders linked to Nav channel dysfunction.

Conclusions

Plant-derived metabolites that modulate Nav channels present significant therapeutic potential for treating neurological disorders, offering more targeted treatments with fewer side effects. However, further research is needed to clarify the underlying molecular mechanisms and validate these compounds through preclinical and clinical trials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine Plus
Phytomedicine Plus Medicine-Complementary and Alternative Medicine
CiteScore
3.70
自引率
0.00%
发文量
178
审稿时长
81 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信