Origin and evolution of serpentinized peridotite from the Ciletuh Mélange in Sunda Arc, Indonesia: Evidence from petrography, mineralogy, and geochemistry

IF 1.7 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Rinaldi Ikhram , Takashi Hoshide , Tsukasa Ohba , Mega Fatimah Rosana , Adi Hardiyono
{"title":"Origin and evolution of serpentinized peridotite from the Ciletuh Mélange in Sunda Arc, Indonesia: Evidence from petrography, mineralogy, and geochemistry","authors":"Rinaldi Ikhram ,&nbsp;Takashi Hoshide ,&nbsp;Tsukasa Ohba ,&nbsp;Mega Fatimah Rosana ,&nbsp;Adi Hardiyono","doi":"10.1016/j.jaesx.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>The Ciletuh Mélange in southern Sundaland (West Java, Indonesia) is a key location for ophiolitic mélanges, featuring widespread serpentinized peridotite. These rocks exhibit varied textures and structures and can be classified into three types based on the extent of serpentinization: type 1 (lherzolite, &lt;10 % serpentinization), type 2 (60–80 % serpentinization), and type 3 (&gt;90 % serpentinization). Olivine and spinel mineral chemistry indicates two origins for the peridotite: magmatic cumulate (type 1, olivine Fo#: ∼81, spinel Cr#: 63–70) and mantle-derived (types 2 and 3, olivine Fo: 88–90, spinel Cr#: 55–66). Protoliths of both types 2 and 3 show abyssal (mid-oceanic ridge basalt) and fore-arc mantle peridotite characteristics, formed by partial melting (∼5–25 %) and melt-rock interaction (TiO<sub>2</sub> in spinel &gt; 1 wt%). Type 1 lherzolite, by contrast, crystallized as a cumulate at the mantle-crust boundary. The variation of geochemical signatures, along with evidence of melt influence, suggest formation in a supra-subduction zone. In subduction systems, the protoliths underwent serpentinization at varying metamorphic grades, producing serpentines such as lizardite, antigorite, chrysotile, and polygonal serpentine. Antigorite formed under high-grade metamorphism, while lizardite, chrysotile, and polygonal serpentine form under lower-grade conditions. The presence of rodingite dikes cutting through serpentinite suggests metasomatic processes, notably rodingitization, involving diffusional metasomatism between serpentinization fluids and metamorphosed gabbro in the subduction zone. Serpentinized peridotites and rodingites were later exhumed as part of the ophiolitic mélange.</div></div>","PeriodicalId":37149,"journal":{"name":"Journal of Asian Earth Sciences: X","volume":"13 ","pages":"Article 100188"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590056024000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Ciletuh Mélange in southern Sundaland (West Java, Indonesia) is a key location for ophiolitic mélanges, featuring widespread serpentinized peridotite. These rocks exhibit varied textures and structures and can be classified into three types based on the extent of serpentinization: type 1 (lherzolite, <10 % serpentinization), type 2 (60–80 % serpentinization), and type 3 (>90 % serpentinization). Olivine and spinel mineral chemistry indicates two origins for the peridotite: magmatic cumulate (type 1, olivine Fo#: ∼81, spinel Cr#: 63–70) and mantle-derived (types 2 and 3, olivine Fo: 88–90, spinel Cr#: 55–66). Protoliths of both types 2 and 3 show abyssal (mid-oceanic ridge basalt) and fore-arc mantle peridotite characteristics, formed by partial melting (∼5–25 %) and melt-rock interaction (TiO2 in spinel > 1 wt%). Type 1 lherzolite, by contrast, crystallized as a cumulate at the mantle-crust boundary. The variation of geochemical signatures, along with evidence of melt influence, suggest formation in a supra-subduction zone. In subduction systems, the protoliths underwent serpentinization at varying metamorphic grades, producing serpentines such as lizardite, antigorite, chrysotile, and polygonal serpentine. Antigorite formed under high-grade metamorphism, while lizardite, chrysotile, and polygonal serpentine form under lower-grade conditions. The presence of rodingite dikes cutting through serpentinite suggests metasomatic processes, notably rodingitization, involving diffusional metasomatism between serpentinization fluids and metamorphosed gabbro in the subduction zone. Serpentinized peridotites and rodingites were later exhumed as part of the ophiolitic mélange.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Asian Earth Sciences: X
Journal of Asian Earth Sciences: X Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
3.40
自引率
0.00%
发文量
53
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信