Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Soheyl Hosseinzadeh, Mohammadreza Bahaari, Mohsen Abyani, Milad Taheri
{"title":"Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects","authors":"Soheyl Hosseinzadeh,&nbsp;Mohammadreza Bahaari,&nbsp;Mohsen Abyani,&nbsp;Milad Taheri","doi":"10.1016/j.apor.2025.104438","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (<span><math><msub><mi>S</mi><mi>l</mi></msub></math></span>) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"155 ","pages":"Article 104438"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725000264","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (Sl) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信