Building Hamiltonian cycles in the semi-random graph process in less than 2n rounds

IF 0.9 3区 数学 Q1 MATHEMATICS
Alan Frieze , Pu Gao , Calum MacRury , Paweł Prałat , Gregory B. Sorkin
{"title":"Building Hamiltonian cycles in the semi-random graph process in less than 2n rounds","authors":"Alan Frieze ,&nbsp;Pu Gao ,&nbsp;Calum MacRury ,&nbsp;Paweł Prałat ,&nbsp;Gregory B. Sorkin","doi":"10.1016/j.ejc.2025.104122","DOIUrl":null,"url":null,"abstract":"<div><div>The semi-random graph process is an adaptive random graph process in which an online algorithm is initially presented an empty graph on <span><math><mi>n</mi></math></span> vertices. In each round, a vertex <span><math><mi>u</mi></math></span> is presented to the algorithm independently and uniformly at random. The algorithm then adaptively selects a vertex <span><math><mi>v</mi></math></span>, and adds the edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> to the graph. For a given graph property, the objective of the algorithm is to force the graph to satisfy this property asymptotically almost surely in as few rounds as possible.</div><div>We focus on the property of Hamiltonicity. We present an adaptive strategy which creates a Hamiltonian cycle in <span><math><mrow><mi>α</mi><mi>n</mi></mrow></math></span> rounds, where <span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>81696</mn></mrow></math></span> is derived from the solution to a system of differential equations. We also show that achieving Hamiltonicity requires at least <span><math><mrow><mi>β</mi><mi>n</mi></mrow></math></span> rounds, where <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>26575</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104122"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The semi-random graph process is an adaptive random graph process in which an online algorithm is initially presented an empty graph on n vertices. In each round, a vertex u is presented to the algorithm independently and uniformly at random. The algorithm then adaptively selects a vertex v, and adds the edge uv to the graph. For a given graph property, the objective of the algorithm is to force the graph to satisfy this property asymptotically almost surely in as few rounds as possible.
We focus on the property of Hamiltonicity. We present an adaptive strategy which creates a Hamiltonian cycle in αn rounds, where α<1.81696 is derived from the solution to a system of differential equations. We also show that achieving Hamiltonicity requires at least βn rounds, where β>1.26575.
在不到2n轮的半随机图过程中建立哈密顿环
半随机图处理是一种自适应随机图处理,其中在线算法首先给出n个顶点上的空图。在每一轮中,一个顶点u被独立地、均匀地随机呈现给算法。然后,算法自适应地选择顶点v,并将边uv添加到图中。对于给定的图属性,该算法的目标是在尽可能少的轮数内迫使图渐近地几乎肯定地满足该属性。我们关注的是哈密顿性的性质。我们提出了一种自适应策略,该策略创建了一个αn轮的哈密顿循环,其中α<;1.81696是由微分方程组的解导出的。我们还证明了达到哈密顿性至少需要βn轮,其中β>;1.26575。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信