Katherine J. Keller , Mark M. Baum , Xiao-Lei Liu , Kemi Ashing-Giwa , Isabel R. Baker , Jerome Blewett , Ann Pearson
{"title":"Constraining the sources of archaeal tetraether lipids in multiple cold seep provinces of the Cascadia Margin","authors":"Katherine J. Keller , Mark M. Baum , Xiao-Lei Liu , Kemi Ashing-Giwa , Isabel R. Baker , Jerome Blewett , Ann Pearson","doi":"10.1016/j.orggeochem.2024.104882","DOIUrl":null,"url":null,"abstract":"<div><div>Archaeal isoprenoid glycerol dialkyl glycerol tetraether lipid (iGDGT) abundance profiles and carbon isotopic compositions reflect the relative distributions of archaeal sources, including planktonic, benthic, and methane-cycling contributions. Here, we analyze the carbon isotope ratios of iGDGTs purified from sediments of three different cold seep sites in Cascadia Margin, off the coast of Washington, USA. Together with relative abundance and glycerol configurations, we use the carbon isotope ratios to estimate the contributions of multiple archaeal sources to the sedimentary iGDGT assemblages and their impact on values of the TEX<sub>86</sub> and methane indices. Using a Bayesian mixing model, we robustly characterize three potential endmembers by determining their characteristic lipid distributions, inferred contributions to the total sediment inventory, and carbon isotopic signatures. Despite the geographic proximity of the sample locations, we find site-specific heterogeneity in relative iGDGT abundances and δ<sup>13</sup>C values. Planktonic and benthic methane-cycling sources predominate in all cases (contributing > 98% of iGDGTs), while benthic non-methane cycling archaea contribute minimally to the sedimentary lipid pool. Environments with higher methane influence show an increased presence of anti-parallel iGDGTs, indicating that methane-cycling archaea may dominantly or exclusively synthesize iGDGTs in this configuration. Our results quantify the relationship between the methane index (MI) and methane impact in systems dominated by planktonic and benthic methane-cycling archaea. Within the framework of the TEX<sub>86</sub> temperature proxy, this permits a quantitative demonstration that it is overly simplistic to apply a MI cutoff threshold as a binary indicator to determine methane influence, and caution is needed when taking this approach in paleoclimate reconstructions.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"200 ","pages":"Article 104882"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001475","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Archaeal isoprenoid glycerol dialkyl glycerol tetraether lipid (iGDGT) abundance profiles and carbon isotopic compositions reflect the relative distributions of archaeal sources, including planktonic, benthic, and methane-cycling contributions. Here, we analyze the carbon isotope ratios of iGDGTs purified from sediments of three different cold seep sites in Cascadia Margin, off the coast of Washington, USA. Together with relative abundance and glycerol configurations, we use the carbon isotope ratios to estimate the contributions of multiple archaeal sources to the sedimentary iGDGT assemblages and their impact on values of the TEX86 and methane indices. Using a Bayesian mixing model, we robustly characterize three potential endmembers by determining their characteristic lipid distributions, inferred contributions to the total sediment inventory, and carbon isotopic signatures. Despite the geographic proximity of the sample locations, we find site-specific heterogeneity in relative iGDGT abundances and δ13C values. Planktonic and benthic methane-cycling sources predominate in all cases (contributing > 98% of iGDGTs), while benthic non-methane cycling archaea contribute minimally to the sedimentary lipid pool. Environments with higher methane influence show an increased presence of anti-parallel iGDGTs, indicating that methane-cycling archaea may dominantly or exclusively synthesize iGDGTs in this configuration. Our results quantify the relationship between the methane index (MI) and methane impact in systems dominated by planktonic and benthic methane-cycling archaea. Within the framework of the TEX86 temperature proxy, this permits a quantitative demonstration that it is overly simplistic to apply a MI cutoff threshold as a binary indicator to determine methane influence, and caution is needed when taking this approach in paleoclimate reconstructions.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.