Improved machine learning framework for prediction of phases and crystal structures of high entropy alloys

Debsundar Dey , Suchandan Das , Anik Pal , Santanu Dey , Chandan Kumar Raul , Pritam Mandal , Arghya Chatterjee , Soumya Chatterjee , Manojit Ghosh
{"title":"Improved machine learning framework for prediction of phases and crystal structures of high entropy alloys","authors":"Debsundar Dey ,&nbsp;Suchandan Das ,&nbsp;Anik Pal ,&nbsp;Santanu Dey ,&nbsp;Chandan Kumar Raul ,&nbsp;Pritam Mandal ,&nbsp;Arghya Chatterjee ,&nbsp;Soumya Chatterjee ,&nbsp;Manojit Ghosh","doi":"10.1016/j.jalmes.2024.100144","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) are gaining popularity because of their remarkable properties controlled by phases and crystal structures. In addition to that, in the field of material informatics, machine learning (ML) techniques have gained considerable attention in predicting phases and crystal structures of HEAs. In this study, a novel ML-based methodology has been proposed to predict different phase stages and crystal structures. To this end, 1345 data samples were used to train the ML model to predict the phases of HEAs. Within the dataset, 705 data were utilized to predict the crystal structures with the help of thermodynamics and electronic configuration as input features. The important features were selected using the Pearson correlation coefficient matrix, followed by using of five distinct boosting algorithms to predict phases and crystal structures. Among all these algorithms, XGBoost recorded the highest detection accuracy of 94.05 % for phases and LightGBM yielded the highest detection accuracy of 90.07 % for crystal structure. Various hyperparameter tuning was conducted to find the optimum performance of the boosting classifiers. A comprehensive comparison was performed between the ML models and some from published papers in reputed journals. From the comparison, it was evident that the proposed methodology showed its superiority in terms of phase and crystal structure detection of HEAs.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"9 ","pages":"Article 100144"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) are gaining popularity because of their remarkable properties controlled by phases and crystal structures. In addition to that, in the field of material informatics, machine learning (ML) techniques have gained considerable attention in predicting phases and crystal structures of HEAs. In this study, a novel ML-based methodology has been proposed to predict different phase stages and crystal structures. To this end, 1345 data samples were used to train the ML model to predict the phases of HEAs. Within the dataset, 705 data were utilized to predict the crystal structures with the help of thermodynamics and electronic configuration as input features. The important features were selected using the Pearson correlation coefficient matrix, followed by using of five distinct boosting algorithms to predict phases and crystal structures. Among all these algorithms, XGBoost recorded the highest detection accuracy of 94.05 % for phases and LightGBM yielded the highest detection accuracy of 90.07 % for crystal structure. Various hyperparameter tuning was conducted to find the optimum performance of the boosting classifiers. A comprehensive comparison was performed between the ML models and some from published papers in reputed journals. From the comparison, it was evident that the proposed methodology showed its superiority in terms of phase and crystal structure detection of HEAs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信