Experimental and process modelling of chemical composition and thermal ageing of Ti-doped cast Cu-Ni alloy for microstructural, conductivity, and mechanical properties

Cynthia C. Okechukwu , Francis O. Edoziuno , Adeolu A. Adediran , Silas O. Okuma , Augustine B. Okoubulu
{"title":"Experimental and process modelling of chemical composition and thermal ageing of Ti-doped cast Cu-Ni alloy for microstructural, conductivity, and mechanical properties","authors":"Cynthia C. Okechukwu ,&nbsp;Francis O. Edoziuno ,&nbsp;Adeolu A. Adediran ,&nbsp;Silas O. Okuma ,&nbsp;Augustine B. Okoubulu","doi":"10.1016/j.jalmes.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of titanium (Ti) content and thermal aging on the mechanical properties, microstructure, and electrical conductivity of Ti-doped Cu-10Ni alloy. Both as-cast and heat-treated alloys were subjected to comprehensive mechanical testing, electrical conductivity measurements, and microstructural analysis. A response surface methodology (RSM) was employed for statistical analysis, predictive modeling, and optimization, with Ti concentration (0.1–3.5 wt%) and aging temperature (400°C–500°C) as the independent variables, and tensile strength, elongation, hardness, impact strength, and electrical conductivity as response variables. The results indicate that Ti addition, particularly in the range of 1.5–3.5 wt%, refined the as-cast microstructure of Cu-10Ni alloys, leading to modest improvements in mechanical properties compared to the base alloy. Aging treatments promoted the formation of precipitates and second phases, notably β-Ni₃Ti, β-Ti₂, and δ-Ti₂Ni, which contributed significantly to property enhancement. The alloy's ultimate tensile strength (UTS) reached 659 MPa with 2.5 wt% Ti aged at 500°C for 2 h. At 3.5 wt% Ti and 450°C aging, the alloy exhibited the highest values for elongation (24.23 %), hardness (193.4 BHN), and impact strength (157 J). Electrical conductivity also improved across all Ti concentrations after aging, with conductivity increasing with higher aging temperatures, though the rate of increase diminished as Ti content rose. Statistical analysis demonstrated good agreement between experimental and predicted values, with the regression models being statistically significant (p &lt; 0.05). Optimal alloy composition and aging conditions were identified, yielding the best combination of mechanical properties and electrical conductivity for the Cu-10Ni alloy.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"9 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of titanium (Ti) content and thermal aging on the mechanical properties, microstructure, and electrical conductivity of Ti-doped Cu-10Ni alloy. Both as-cast and heat-treated alloys were subjected to comprehensive mechanical testing, electrical conductivity measurements, and microstructural analysis. A response surface methodology (RSM) was employed for statistical analysis, predictive modeling, and optimization, with Ti concentration (0.1–3.5 wt%) and aging temperature (400°C–500°C) as the independent variables, and tensile strength, elongation, hardness, impact strength, and electrical conductivity as response variables. The results indicate that Ti addition, particularly in the range of 1.5–3.5 wt%, refined the as-cast microstructure of Cu-10Ni alloys, leading to modest improvements in mechanical properties compared to the base alloy. Aging treatments promoted the formation of precipitates and second phases, notably β-Ni₃Ti, β-Ti₂, and δ-Ti₂Ni, which contributed significantly to property enhancement. The alloy's ultimate tensile strength (UTS) reached 659 MPa with 2.5 wt% Ti aged at 500°C for 2 h. At 3.5 wt% Ti and 450°C aging, the alloy exhibited the highest values for elongation (24.23 %), hardness (193.4 BHN), and impact strength (157 J). Electrical conductivity also improved across all Ti concentrations after aging, with conductivity increasing with higher aging temperatures, though the rate of increase diminished as Ti content rose. Statistical analysis demonstrated good agreement between experimental and predicted values, with the regression models being statistically significant (p < 0.05). Optimal alloy composition and aging conditions were identified, yielding the best combination of mechanical properties and electrical conductivity for the Cu-10Ni alloy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信