Study of phase evolution and phase stability in a novel FCC based Al30Ti35Mg5V10Fe8Cr12 lightweight high-entropy alloy processed by mechanical alloying

Ayush Sourav , Ankit Singh Negi , Pranjal Chauhan , T. Sudeep Kumar , Shanmugasundaram Thangaraju
{"title":"Study of phase evolution and phase stability in a novel FCC based Al30Ti35Mg5V10Fe8Cr12 lightweight high-entropy alloy processed by mechanical alloying","authors":"Ayush Sourav ,&nbsp;Ankit Singh Negi ,&nbsp;Pranjal Chauhan ,&nbsp;T. Sudeep Kumar ,&nbsp;Shanmugasundaram Thangaraju","doi":"10.1016/j.jalmes.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) have gained significant attention from researchers due to their exceptional mechanical properties. While most the reported lightweight high-entropy alloys have Body Centered Cubic (BCC), Hexagonal Close Packed (HCP), and complex intermetallic phases, there is growing interest in development of Face Centered Cubic (FCC) based Lightweight High-Entropy Alloys (LWHEA) for applications prioritizing energy efficiency. In this study, a design strategy for synthesizing a stable FCC-based LWHEA through multivariate optimization of elements and thermodynamic parameters was presented. A novel Al<sub>30</sub>Ti<sub>35</sub>Mg<sub>5</sub>V<sub>10</sub>Fe<sub>8</sub>Cr<sub>12</sub> LWHEA was designed and processed through a mechanical alloying route with a theoretical density of 4.5 g/cc. The compaction of the alloy was performed by spark plasma sintering (SPS) at 890 ℃ and 60 MPa for 15 minutes. The hardness of sintered sample was found to be 550 ± 18 HV (5.3 GPa). Microstructural evolution of the alloy was studied using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The microstructural analysis of alloy revealed that a combination of FCC and BCC phases are present in milled sample as well as sintered sample. The phase stability was explained through Gibbs free energy calculations of competing phases.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"9 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) have gained significant attention from researchers due to their exceptional mechanical properties. While most the reported lightweight high-entropy alloys have Body Centered Cubic (BCC), Hexagonal Close Packed (HCP), and complex intermetallic phases, there is growing interest in development of Face Centered Cubic (FCC) based Lightweight High-Entropy Alloys (LWHEA) for applications prioritizing energy efficiency. In this study, a design strategy for synthesizing a stable FCC-based LWHEA through multivariate optimization of elements and thermodynamic parameters was presented. A novel Al30Ti35Mg5V10Fe8Cr12 LWHEA was designed and processed through a mechanical alloying route with a theoretical density of 4.5 g/cc. The compaction of the alloy was performed by spark plasma sintering (SPS) at 890 ℃ and 60 MPa for 15 minutes. The hardness of sintered sample was found to be 550 ± 18 HV (5.3 GPa). Microstructural evolution of the alloy was studied using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The microstructural analysis of alloy revealed that a combination of FCC and BCC phases are present in milled sample as well as sintered sample. The phase stability was explained through Gibbs free energy calculations of competing phases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信