Gravimetric modeling of the Nazca plate subduction geometry West of Ecuador

IF 2.1 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Carlos J. Araque-Pérez , Janckarlos Reyes-Lucero
{"title":"Gravimetric modeling of the Nazca plate subduction geometry West of Ecuador","authors":"Carlos J. Araque-Pérez ,&nbsp;Janckarlos Reyes-Lucero","doi":"10.1016/j.jog.2025.102073","DOIUrl":null,"url":null,"abstract":"<div><div>The Ecuador and Andean Cordillera in South America are highly vulnerable to hazard-ous events. Despite this, the geometry of the subduction plate in Ecuador has rarely been studied using the gravimetric method, a remarkable tool used to understand geological structures. In this study, a gravimetric model of the subduction zone at the western boundary of Ecuador was created using the European-enhanced gravity model of the Earth and the seismic catalog of Ecuador. A workflow was enforced using terrain corrections, the radial power spectrum, and Euler deconvolution to determine the regional and residual gravimetric components and depth of the gravimetric sources. Seafloor morphological structures were then incorporated into the model construction, including the Carnegie Ridge, fracture of Grijalva, and other elements that split the Nazca and Farallon Plates. Additionally, existing faults in the continental plate were considered, mainly the Dolores-Guayaquil system fault that separates the North Andean and South American Blocks. The models were directly constructed from gravimetric anomalies and calibrated using seismic hypocenters. The root mean square error of the current models exhibited a small offset, indicating a good fit between the processed gravimetric data and the theoretical response of the constructed model. The results were described for two sections along latitudes 1°S and 3°S, indicating that the geometric variations in the subduction plate were caused by heterogeneous physiographic elements in the oceanic crust or by a prior subduction area of the Farallon Plate.</div></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":"163 ","pages":"Article 102073"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370725000018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Ecuador and Andean Cordillera in South America are highly vulnerable to hazard-ous events. Despite this, the geometry of the subduction plate in Ecuador has rarely been studied using the gravimetric method, a remarkable tool used to understand geological structures. In this study, a gravimetric model of the subduction zone at the western boundary of Ecuador was created using the European-enhanced gravity model of the Earth and the seismic catalog of Ecuador. A workflow was enforced using terrain corrections, the radial power spectrum, and Euler deconvolution to determine the regional and residual gravimetric components and depth of the gravimetric sources. Seafloor morphological structures were then incorporated into the model construction, including the Carnegie Ridge, fracture of Grijalva, and other elements that split the Nazca and Farallon Plates. Additionally, existing faults in the continental plate were considered, mainly the Dolores-Guayaquil system fault that separates the North Andean and South American Blocks. The models were directly constructed from gravimetric anomalies and calibrated using seismic hypocenters. The root mean square error of the current models exhibited a small offset, indicating a good fit between the processed gravimetric data and the theoretical response of the constructed model. The results were described for two sections along latitudes 1°S and 3°S, indicating that the geometric variations in the subduction plate were caused by heterogeneous physiographic elements in the oceanic crust or by a prior subduction area of the Farallon Plate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodynamics
Journal of Geodynamics 地学-地球化学与地球物理
CiteScore
4.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信