Reaction engineering of the hydrogenolysis of liquid n-Alkanes: Comparison of flow and batch reaction systems

IF 5.5 Q1 ENGINEERING, CHEMICAL
Zhuoming Feng , Siwon Lee , Raymond J. Gorte , John M. Vohs
{"title":"Reaction engineering of the hydrogenolysis of liquid n-Alkanes: Comparison of flow and batch reaction systems","authors":"Zhuoming Feng ,&nbsp;Siwon Lee ,&nbsp;Raymond J. Gorte ,&nbsp;John M. Vohs","doi":"10.1016/j.ceja.2024.100701","DOIUrl":null,"url":null,"abstract":"<div><div>Currently there is much interest in developing catalysts for the hydrogenolysis of long-chain alkanes for use in the recycling and upcycling of waste polyolefins. Understanding how reactor configurations affect reactivity and product distributions for this class of reactions is equally important. To aid in this effort, here we report a study of the hydrogenolysis of the alkane, <em>n</em>-hexatriacontane (C<sub>36</sub>H<sub>74</sub>), over a Ru/SiO<sub>2</sub> catalyst in both batch and flow reactor configurations. For similar catalyst contact times and H<sub>2</sub> pressures, the C<sub>36</sub> hydrogenolysis rate was found to be significantly higher in the batch reactor compared to the flow reactor which can be attributed to H<sub>2</sub> bubbles forming inactive dry zones on the catalyst surface in the flow reactor which are less prevalent in the batch reactor. In both reactor systems the hydrogenolysis rate was found to be negative order in H<sub>2</sub> and that transport of the H<sub>2</sub> through the liquid phase to the catalyst surface was not rate limiting.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100701"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently there is much interest in developing catalysts for the hydrogenolysis of long-chain alkanes for use in the recycling and upcycling of waste polyolefins. Understanding how reactor configurations affect reactivity and product distributions for this class of reactions is equally important. To aid in this effort, here we report a study of the hydrogenolysis of the alkane, n-hexatriacontane (C36H74), over a Ru/SiO2 catalyst in both batch and flow reactor configurations. For similar catalyst contact times and H2 pressures, the C36 hydrogenolysis rate was found to be significantly higher in the batch reactor compared to the flow reactor which can be attributed to H2 bubbles forming inactive dry zones on the catalyst surface in the flow reactor which are less prevalent in the batch reactor. In both reactor systems the hydrogenolysis rate was found to be negative order in H2 and that transport of the H2 through the liquid phase to the catalyst surface was not rate limiting.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信