Tailored multiscale instabilities in a grid metamaterial

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nicola Marasciuolo, Domenico De Tommasi, Francesco Trentadue, Gennaro Vitucci
{"title":"Tailored multiscale instabilities in a grid metamaterial","authors":"Nicola Marasciuolo,&nbsp;Domenico De Tommasi,&nbsp;Francesco Trentadue,&nbsp;Gennaro Vitucci","doi":"10.1016/j.eml.2024.102284","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate a plane metamaterial made up of a periodic grid of shear-deformable rods with rigid finite-size joints, subjected to a biaxial macro-stress state. We derive closed-form solutions for the stability domains by means of Floquet-Bloch theory. Remarkably, this analytical modeling enable us to determine how the size of the rigid joints yields to transition from macroscopic to microscopic critical modes (i.e. pattern transformation) for specific macro-stress states. We also examine a minimum weight problem for this class of metamaterials. The analytical model predictivity in describing multiscale instabilities is validated by comparisons with experimental findings and numerical analyses.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"75 ","pages":"Article 102284"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001640","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate a plane metamaterial made up of a periodic grid of shear-deformable rods with rigid finite-size joints, subjected to a biaxial macro-stress state. We derive closed-form solutions for the stability domains by means of Floquet-Bloch theory. Remarkably, this analytical modeling enable us to determine how the size of the rigid joints yields to transition from macroscopic to microscopic critical modes (i.e. pattern transformation) for specific macro-stress states. We also examine a minimum weight problem for this class of metamaterials. The analytical model predictivity in describing multiscale instabilities is validated by comparisons with experimental findings and numerical analyses.
网格超材料的定制多尺度不稳定性
在这项研究中,我们研究了一种平面超材料,该材料由具有刚性有限尺寸接头的剪切变形棒的周期性网格组成,受到双轴宏观应力状态。利用Floquet-Bloch理论导出了稳定域的闭型解。值得注意的是,这种分析建模使我们能够确定刚性节点的尺寸如何屈服于特定宏观应力状态下从宏观到微观临界模式的过渡(即模式转换)。我们还研究了这类超材料的最小重量问题。通过与实验结果和数值分析的比较,验证了解析模型在描述多尺度不稳定性方面的预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信