Reza Keshavarzi , Farzaneh Hajisharifi , Zahra Saki , Mirkazem Omrani , Reza Sheibani , Niloufar Afzali , Mojtaba Abdi-Jalebi , Luigi Vesce , Aldo Di Carlo
{"title":"Organic and perovskite solar cells based on scalable slot-die coating technique: Progress and challenges","authors":"Reza Keshavarzi , Farzaneh Hajisharifi , Zahra Saki , Mirkazem Omrani , Reza Sheibani , Niloufar Afzali , Mojtaba Abdi-Jalebi , Luigi Vesce , Aldo Di Carlo","doi":"10.1016/j.nantod.2024.102600","DOIUrl":null,"url":null,"abstract":"<div><div>In recent times, organic and perovskite solar cells (OSCs and PSCs) has garnered considerable attention due to the rapid advancement of their impressive photovoltaic performance, achieving power conversion efficiencies exceeding 19 % and 26 %, respectively. Various industrially scalable methods such as blade coating, spray coating, and slot-die coating have been employed to manufacture these promising solar cells, yet the efficiency of devices produced by these methods tends to be lower than those prepared in laboratory scales. To create pinhole-free and high-quality active layer in scalable devices, controlling the crystallization process is required. Therefore, the quality of the active layers plays a pivotal role in constructing efficient and stable solar cells. Among the scalable methods, the slot-die coating method is emerged as particularly attractive for large-scale and cost-effective production of both OSCs and PSCs. Thus, in the current work, we present the strategies to control the morphology of organic and perovskite films prepared by slot-die coating method, such as drying conditions, precursor engineering, solvent engineering, surface modification, and additive engineering, temperature controlling, sequential processing, and ternary blends. Also, the effect of slot-die-coated charge trasportlayers on the OSC and PSC efficiencies and stabilities has been investigatedtransport. Finally, the challenges and potential of commercialization of these promising solar cells, improving their efficiency, quality, and sustainability in the future, are discussed.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102600"},"PeriodicalIF":13.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004560","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times, organic and perovskite solar cells (OSCs and PSCs) has garnered considerable attention due to the rapid advancement of their impressive photovoltaic performance, achieving power conversion efficiencies exceeding 19 % and 26 %, respectively. Various industrially scalable methods such as blade coating, spray coating, and slot-die coating have been employed to manufacture these promising solar cells, yet the efficiency of devices produced by these methods tends to be lower than those prepared in laboratory scales. To create pinhole-free and high-quality active layer in scalable devices, controlling the crystallization process is required. Therefore, the quality of the active layers plays a pivotal role in constructing efficient and stable solar cells. Among the scalable methods, the slot-die coating method is emerged as particularly attractive for large-scale and cost-effective production of both OSCs and PSCs. Thus, in the current work, we present the strategies to control the morphology of organic and perovskite films prepared by slot-die coating method, such as drying conditions, precursor engineering, solvent engineering, surface modification, and additive engineering, temperature controlling, sequential processing, and ternary blends. Also, the effect of slot-die-coated charge trasportlayers on the OSC and PSC efficiencies and stabilities has been investigatedtransport. Finally, the challenges and potential of commercialization of these promising solar cells, improving their efficiency, quality, and sustainability in the future, are discussed.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.