Coronil effectively inhibits the interaction of clinically relevant Omicron mutants of SARS-CoV-2 spike proteins with human ACE2 receptor

Q3 Pharmacology, Toxicology and Pharmaceutics
Acharya Balkrishna , Rishabh Dev , Sandeep Kumar , Anurag Varshney
{"title":"Coronil effectively inhibits the interaction of clinically relevant Omicron mutants of SARS-CoV-2 spike proteins with human ACE2 receptor","authors":"Acharya Balkrishna ,&nbsp;Rishabh Dev ,&nbsp;Sandeep Kumar ,&nbsp;Anurag Varshney","doi":"10.1016/j.phyplu.2024.100705","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accumulating evidence suggests that the receptor binding domain (RBD) of the SARS-CoV-2 Omicron variant has several times more binding affinity to the human angiotensin-converting enzyme 2 (ACE2) receptor compared to the RBD of the original Covid-19 strain. This increased binding affinity of the Omicron variant is responsible for its increased internalization and infectivity.</div></div><div><h3>Purpose</h3><div>In the present study, the impact of Coronil, a tri-herbal formulation of extracts from <em>Withania somnifera, Tinospora cordifolia and Ocimum sanctum</em> on the binding properties of Omicron SARS-CoV-2 variant spike proteins (S proteins) was investigated.</div></div><div><h3>Methods</h3><div>Chemical composition of Coronil was determined by the Prominence-XR UHPLC system. The ELISA-based ACE2 binding inhibition assay was performed to delineate the effect of Coronil on the interaction between human ACE2 receptor and different Omicron variant S-proteins such as BA.4/BA5, XBB, BA.2.75.2, BA4.6/BF.7, BA.2.75.2, BQ.1.1 and a recently found spike protein variant JN.1 which is thought to emerge from BA.2.86.</div></div><div><h3>Results</h3><div>Coronil showed a dose-dependent inhibitory effect on the interactions between ACE2 and receptor binding domains (RBD) of all variants of S-proteins evaluated in this study including the recently emerged, highly transmissible variant spike protein JN.1. Although, Coronil significantly reduced the binding percentage in almost all the variant spike proteins, the maximum inhibition was achieved against BA.4/BA.5 where it inhibited the S protein – ACE2 interaction even at a low concentration of 3 µg/ml (16.6 %). This binding inhibition was further increased to 60.3 and 84.3 % at 100 and 300 µg/ml respectively.</div></div><div><h3>Conclusion</h3><div>This capability of Coronil to inhibit the binding of S-protein variants with ACE2 receptor may interfere with viral binding and internalization resulting in reduced infectivity of these Omicron spike protein variants. Overall, our data underscores the potential of Coronil in combating the various newly emerged Omicron spike protein variants. These findings may provide a basis for further studies of Coronil for its clinical effectiveness against these Omicron variants.</div></div>","PeriodicalId":34599,"journal":{"name":"Phytomedicine Plus","volume":"5 1","pages":"Article 100705"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667031324001799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Accumulating evidence suggests that the receptor binding domain (RBD) of the SARS-CoV-2 Omicron variant has several times more binding affinity to the human angiotensin-converting enzyme 2 (ACE2) receptor compared to the RBD of the original Covid-19 strain. This increased binding affinity of the Omicron variant is responsible for its increased internalization and infectivity.

Purpose

In the present study, the impact of Coronil, a tri-herbal formulation of extracts from Withania somnifera, Tinospora cordifolia and Ocimum sanctum on the binding properties of Omicron SARS-CoV-2 variant spike proteins (S proteins) was investigated.

Methods

Chemical composition of Coronil was determined by the Prominence-XR UHPLC system. The ELISA-based ACE2 binding inhibition assay was performed to delineate the effect of Coronil on the interaction between human ACE2 receptor and different Omicron variant S-proteins such as BA.4/BA5, XBB, BA.2.75.2, BA4.6/BF.7, BA.2.75.2, BQ.1.1 and a recently found spike protein variant JN.1 which is thought to emerge from BA.2.86.

Results

Coronil showed a dose-dependent inhibitory effect on the interactions between ACE2 and receptor binding domains (RBD) of all variants of S-proteins evaluated in this study including the recently emerged, highly transmissible variant spike protein JN.1. Although, Coronil significantly reduced the binding percentage in almost all the variant spike proteins, the maximum inhibition was achieved against BA.4/BA.5 where it inhibited the S protein – ACE2 interaction even at a low concentration of 3 µg/ml (16.6 %). This binding inhibition was further increased to 60.3 and 84.3 % at 100 and 300 µg/ml respectively.

Conclusion

This capability of Coronil to inhibit the binding of S-protein variants with ACE2 receptor may interfere with viral binding and internalization resulting in reduced infectivity of these Omicron spike protein variants. Overall, our data underscores the potential of Coronil in combating the various newly emerged Omicron spike protein variants. These findings may provide a basis for further studies of Coronil for its clinical effectiveness against these Omicron variants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine Plus
Phytomedicine Plus Medicine-Complementary and Alternative Medicine
CiteScore
3.70
自引率
0.00%
发文量
178
审稿时长
81 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信