A prototype model of zero trust architecture blockchain with EigenTrust-based practical Byzantine fault tolerance protocol to manage decentralized clinical trials

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ashok Kumar Peepliwal , Hari Mohan Pandey , Surya Prakash , Sudhinder Singh Chowhan , Vinesh Kumar , Rahul Sharma , Anand A. Mahajan
{"title":"A prototype model of zero trust architecture blockchain with EigenTrust-based practical Byzantine fault tolerance protocol to manage decentralized clinical trials","authors":"Ashok Kumar Peepliwal ,&nbsp;Hari Mohan Pandey ,&nbsp;Surya Prakash ,&nbsp;Sudhinder Singh Chowhan ,&nbsp;Vinesh Kumar ,&nbsp;Rahul Sharma ,&nbsp;Anand A. Mahajan","doi":"10.1016/j.bcra.2024.100232","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic necessitated the emergence of Decentralized Clinical Trials (DCTs) due to patient retention, accelerating trials, improving data accessibility, enabling virtual care, and facilitating seamless communication through integrated systems. However, integrating systems in DCTs exposes clinical data to potential security threats, making them susceptible to theft at any stage, a high risk of protocol deviations, and monitoring issues. To mitigate these challenges, blockchain technology serves as a secure framework, acting as a decentralized ledger, creating an immutable environment by establishing a zero-trust architecture, where data are deemed untrusted until verified. In combination with Internet of Things (IoT)-enabled wearable devices, blockchain secures the transfer of clinical trial data on private blockchains during DCT automation and operations. This paper proposes a prototype model of the zero-Trust Architecture Blockchain (z-TAB) to integrate patient-generated clinical trial data during DCT operation management. The EigenTrust-based Practical Byzantine Fault Tolerance (T-PBFT) algorithm has been incorporated as a consensus protocol, leveraging Hyperledger Fabric. Furthermore, the IoT has been integrated to streamline data processing among stakeholders within the blockchain platforms. Rigorous evaluation has been done for immutability, privacy and security, mutual consensus, transparency, accountability, tracking and tracing, and temperature‒humidity control parameters.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"5 4","pages":"Article 100232"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000459","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic necessitated the emergence of Decentralized Clinical Trials (DCTs) due to patient retention, accelerating trials, improving data accessibility, enabling virtual care, and facilitating seamless communication through integrated systems. However, integrating systems in DCTs exposes clinical data to potential security threats, making them susceptible to theft at any stage, a high risk of protocol deviations, and monitoring issues. To mitigate these challenges, blockchain technology serves as a secure framework, acting as a decentralized ledger, creating an immutable environment by establishing a zero-trust architecture, where data are deemed untrusted until verified. In combination with Internet of Things (IoT)-enabled wearable devices, blockchain secures the transfer of clinical trial data on private blockchains during DCT automation and operations. This paper proposes a prototype model of the zero-Trust Architecture Blockchain (z-TAB) to integrate patient-generated clinical trial data during DCT operation management. The EigenTrust-based Practical Byzantine Fault Tolerance (T-PBFT) algorithm has been incorporated as a consensus protocol, leveraging Hyperledger Fabric. Furthermore, the IoT has been integrated to streamline data processing among stakeholders within the blockchain platforms. Rigorous evaluation has been done for immutability, privacy and security, mutual consensus, transparency, accountability, tracking and tracing, and temperature‒humidity control parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信