{"title":"Recent developments of high-gravity (reactive) distillation in rotating packed beds","authors":"Isabel Pazmiño-Mayorga , Qing Li , Anton A Kiss","doi":"10.1016/j.coche.2024.101071","DOIUrl":null,"url":null,"abstract":"<div><div>Gravitation dictates the allowable flow phases and the achievable mass transfer rates in classic distillation columns, which are tall for that exact reason. High-gravity (HiGee) devices use a high centrifugal field to increase the interfacial area through high-speed rotating packing, resulting in a large enhancement of gas–liquid mass transfer and thus smaller equipment volumes. HiGee is an effective process intensification approach to enhance both reaction and separation efficiency. Combining reaction and distillation in a HiGee equipment (R-HiGee) is a topic that attracts significant attention. This paper summarises recent developments in HiGee (reactive) distillation technologies, including process synthesis and design, modelling and analysis of rotating packed bed systems, and equipment design. It also highlights future directions for developments in order to facilitate the systematic evaluation and application of high-gravity (reactive) distillation technologies.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101071"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000728","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitation dictates the allowable flow phases and the achievable mass transfer rates in classic distillation columns, which are tall for that exact reason. High-gravity (HiGee) devices use a high centrifugal field to increase the interfacial area through high-speed rotating packing, resulting in a large enhancement of gas–liquid mass transfer and thus smaller equipment volumes. HiGee is an effective process intensification approach to enhance both reaction and separation efficiency. Combining reaction and distillation in a HiGee equipment (R-HiGee) is a topic that attracts significant attention. This paper summarises recent developments in HiGee (reactive) distillation technologies, including process synthesis and design, modelling and analysis of rotating packed bed systems, and equipment design. It also highlights future directions for developments in order to facilitate the systematic evaluation and application of high-gravity (reactive) distillation technologies.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.