Development of a novel physics-informed machine learning model for advanced thermochemical waste conversion

IF 5.5 Q1 ENGINEERING, CHEMICAL
Surika van Wyk
{"title":"Development of a novel physics-informed machine learning model for advanced thermochemical waste conversion","authors":"Surika van Wyk","doi":"10.1016/j.ceja.2024.100699","DOIUrl":null,"url":null,"abstract":"<div><div>A physics-informed machine learning (ML) model, which incorporates the conservation of carbon mass, was developed to predict the product gas yield and composition for indirect gasification of waste in a fluidized bed. A dataset was compiled from experimental data of an in-house reactor, encompassing a wide range of feedstocks characteristics (biomass to plastics) and process conditions, which served as input for the model. Four data-driven models were trained and evaluated, with the XGBoost model having the best predictive accuracy (RMSE = 1.1 &amp; R<sup>2</sup> = 0.99) and being adapted for the physics-informed model. The optimum physics contribution was 30 % (70 % data contribution) to maintain predictive accuracy (RMSE = 2.7 &amp; R<sup>2</sup> = 0.95) and improve carbon closure. Feedstock properties were shown to have a higher feature importance compared to the operating conditions. The developed physics-informed model demonstrated the potential of ML models for the modelling of gasification of various waste streams. This is a promising first step towards improving data-driven ML models for application to thermochemical systems.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100699"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A physics-informed machine learning (ML) model, which incorporates the conservation of carbon mass, was developed to predict the product gas yield and composition for indirect gasification of waste in a fluidized bed. A dataset was compiled from experimental data of an in-house reactor, encompassing a wide range of feedstocks characteristics (biomass to plastics) and process conditions, which served as input for the model. Four data-driven models were trained and evaluated, with the XGBoost model having the best predictive accuracy (RMSE = 1.1 & R2 = 0.99) and being adapted for the physics-informed model. The optimum physics contribution was 30 % (70 % data contribution) to maintain predictive accuracy (RMSE = 2.7 & R2 = 0.95) and improve carbon closure. Feedstock properties were shown to have a higher feature importance compared to the operating conditions. The developed physics-informed model demonstrated the potential of ML models for the modelling of gasification of various waste streams. This is a promising first step towards improving data-driven ML models for application to thermochemical systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信