The mechanism of sulfidation roasting pretreatment of cerussite for enhanced flotation behavior

IF 5.5 Q1 ENGINEERING, CHEMICAL
Yu Miao , Wanting Yang , Xuemin Ding , Jiarui Min , Bao Guo , Xiangxiang Chen , Chun Yu
{"title":"The mechanism of sulfidation roasting pretreatment of cerussite for enhanced flotation behavior","authors":"Yu Miao ,&nbsp;Wanting Yang ,&nbsp;Xuemin Ding ,&nbsp;Jiarui Min ,&nbsp;Bao Guo ,&nbsp;Xiangxiang Chen ,&nbsp;Chun Yu","doi":"10.1016/j.ceja.2024.100689","DOIUrl":null,"url":null,"abstract":"<div><div>Lead is an indispensable non-ferrous metal for industrial development. As primary galena(PbS) resources are being exhausted, the utilization of lead oxide ore resources have become increasingly important. Compared with the conventional lead oxide surface sulfidation flotation method by NaHS dosing in the pulp, the roasting sulfidation pre-treatment method has the characteristics of high efficiency and suitable for various types of ores. In this paper, we firstly demonstrate that pyrite(FeS<sub>2</sub>) can provide a sulfurous atmosphere to convert cerussite(PbCO<sub>3</sub>) into galena(PbS) through thermodynamic calculations. Then, the reaction conditions were optimized through the roasting sulfidation conditions such as the contact mode, time and temperature of the reaction, and the sulfidation mechanism of cerussite at high temperature roasting was studied by using XRF, XRD, SEM and XPS. It was clarified that the sulfidation of cerussite was progressed by reacting with sulfur-based atmosphere from the surface layer to form PbS, and then gradually penetrating into the inner layer until PbS was completely generated, and the recovery rate was increased from 14.95 % to &gt;80 % after optimization.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100689"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lead is an indispensable non-ferrous metal for industrial development. As primary galena(PbS) resources are being exhausted, the utilization of lead oxide ore resources have become increasingly important. Compared with the conventional lead oxide surface sulfidation flotation method by NaHS dosing in the pulp, the roasting sulfidation pre-treatment method has the characteristics of high efficiency and suitable for various types of ores. In this paper, we firstly demonstrate that pyrite(FeS2) can provide a sulfurous atmosphere to convert cerussite(PbCO3) into galena(PbS) through thermodynamic calculations. Then, the reaction conditions were optimized through the roasting sulfidation conditions such as the contact mode, time and temperature of the reaction, and the sulfidation mechanism of cerussite at high temperature roasting was studied by using XRF, XRD, SEM and XPS. It was clarified that the sulfidation of cerussite was progressed by reacting with sulfur-based atmosphere from the surface layer to form PbS, and then gradually penetrating into the inner layer until PbS was completely generated, and the recovery rate was increased from 14.95 % to >80 % after optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信