Wei Zhong Jiang , Yi Zhang , Yu Ming Luo , Gui Lei Chen , Yang Pan , Han Yan , Xin Ren
{"title":"A novel auxetic acoustic metamaterial plate with enlarged bandgap","authors":"Wei Zhong Jiang , Yi Zhang , Yu Ming Luo , Gui Lei Chen , Yang Pan , Han Yan , Xin Ren","doi":"10.1016/j.eml.2025.102291","DOIUrl":null,"url":null,"abstract":"<div><div>In the future, to meet the complex and changeable conditions of the actual environment, the development of multi-functional metamaterials that can realize the superposition of multiple properties is attractive. In this work, a novel acoustic metamaterial based on variable stiffness factor (VSF) perforated plates is proposed. Based on Bloch theorem, the dispersion curves of the proposed structures are calculated using finite element software, and the results are verified by calculating the transmission loss curves. The bandgap characteristics can be slightly improved by varying the VSF values. Compared with positive and negative Poisson’s ratio metamaterials with the same porosity, the proposed structure can achieve lower frequency and wider bandgap. Secondly, the two typical acoustic metamaterials proposed in this paper have ultra-wide bandgap widths of 121 % and 112 % respectively. With the change of strain, the bandgap of the structure can be adjusted in real-time, which is valuable for the study of low-frequency bandgap. The new findings in this paper promote the development of columnar metamaterials and also provide a new idea for the study of multi-property superimposed metamaterials.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"75 ","pages":"Article 102291"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the future, to meet the complex and changeable conditions of the actual environment, the development of multi-functional metamaterials that can realize the superposition of multiple properties is attractive. In this work, a novel acoustic metamaterial based on variable stiffness factor (VSF) perforated plates is proposed. Based on Bloch theorem, the dispersion curves of the proposed structures are calculated using finite element software, and the results are verified by calculating the transmission loss curves. The bandgap characteristics can be slightly improved by varying the VSF values. Compared with positive and negative Poisson’s ratio metamaterials with the same porosity, the proposed structure can achieve lower frequency and wider bandgap. Secondly, the two typical acoustic metamaterials proposed in this paper have ultra-wide bandgap widths of 121 % and 112 % respectively. With the change of strain, the bandgap of the structure can be adjusted in real-time, which is valuable for the study of low-frequency bandgap. The new findings in this paper promote the development of columnar metamaterials and also provide a new idea for the study of multi-property superimposed metamaterials.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.