Precious metal Ir-ALD process engineered 2D V-MXene advanced heterostructures for next-generation hydrogen evolution electrocatalyst

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Debananda Mohapatra , Mohd Zahid Ansari , Yeseul Son , Sanghyuk Lee , Youngho Kang , Soo-Hyun Kim
{"title":"Precious metal Ir-ALD process engineered 2D V-MXene advanced heterostructures for next-generation hydrogen evolution electrocatalyst","authors":"Debananda Mohapatra ,&nbsp;Mohd Zahid Ansari ,&nbsp;Yeseul Son ,&nbsp;Sanghyuk Lee ,&nbsp;Youngho Kang ,&nbsp;Soo-Hyun Kim","doi":"10.1016/j.mtnano.2024.100557","DOIUrl":null,"url":null,"abstract":"<div><div>Precious metals are rare, requiring efficient and intelligent uses from single atoms to nanoclusters compared to their bulk counterparts for clean and green electrocatalysis applications. 2D layered MXene nanomaterials family welcomes structural and compositional variation avenues for their hydrogen evolution reaction (HER) electrolysis activities for sustainable hydrogen energy. To achieve a low over-potential value to cross the electrochemical energy barrier, producing high current density and low Tafel slopes critical performance parameters, we introduce highly efficient atomic layer deposited (ALD) iridium (Ir) on the least explored 2D delaminated V-MXene (ALDIr/V-MXene) for suitable use of expensive Ir. By an innovative, rational design of ALDIr/V-MXene heterostructure with controlled Ir-ALD process cycles (50–200), 2D layered V-MXene's accessible electrocatalytic active sites, hence their overall electrochemical energy conversion performance could be monitored and explored as desired. The optimized ALDIr-150/V-MXene electrocatalyst demonstrates the best HER catalytic performance among all designed ALDIr/V-MXene heterostructures, requiring a very low 91 mV overpotential to reach a standard current density (10 mA cm<sup>−2</sup>) and only 204 mV overpotential for its 10-times with fast electron transfer kinetics. The exceptionally high electrocatalytic activities support the precise role of Ir precious single atoms/nanoclusters engineering to the delaminated V-MXene through a well-controlled self-limiting ALD technique as established by first-principles computational methods. Ir single atoms/nanoclusters and their successful formation of advanced ALDIr/V-MXene heterostructure comprehensively probed using next-generation ultra-high-resolution scanning/transmission electron microscopies via cutting-edge spherical aberration correction technology. To the best of our knowledge, this is the first work on the precise use of Ir precious metals (single atoms/nanoclusters) on 2D V-MXene via ALD for successful HER electrocatalysis applications, paving the way forward for practical application-oriented other 2D nanomaterials and MXene families design through industrially preferred ALD technology.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100557"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258884202400107X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precious metals are rare, requiring efficient and intelligent uses from single atoms to nanoclusters compared to their bulk counterparts for clean and green electrocatalysis applications. 2D layered MXene nanomaterials family welcomes structural and compositional variation avenues for their hydrogen evolution reaction (HER) electrolysis activities for sustainable hydrogen energy. To achieve a low over-potential value to cross the electrochemical energy barrier, producing high current density and low Tafel slopes critical performance parameters, we introduce highly efficient atomic layer deposited (ALD) iridium (Ir) on the least explored 2D delaminated V-MXene (ALDIr/V-MXene) for suitable use of expensive Ir. By an innovative, rational design of ALDIr/V-MXene heterostructure with controlled Ir-ALD process cycles (50–200), 2D layered V-MXene's accessible electrocatalytic active sites, hence their overall electrochemical energy conversion performance could be monitored and explored as desired. The optimized ALDIr-150/V-MXene electrocatalyst demonstrates the best HER catalytic performance among all designed ALDIr/V-MXene heterostructures, requiring a very low 91 mV overpotential to reach a standard current density (10 mA cm−2) and only 204 mV overpotential for its 10-times with fast electron transfer kinetics. The exceptionally high electrocatalytic activities support the precise role of Ir precious single atoms/nanoclusters engineering to the delaminated V-MXene through a well-controlled self-limiting ALD technique as established by first-principles computational methods. Ir single atoms/nanoclusters and their successful formation of advanced ALDIr/V-MXene heterostructure comprehensively probed using next-generation ultra-high-resolution scanning/transmission electron microscopies via cutting-edge spherical aberration correction technology. To the best of our knowledge, this is the first work on the precise use of Ir precious metals (single atoms/nanoclusters) on 2D V-MXene via ALD for successful HER electrocatalysis applications, paving the way forward for practical application-oriented other 2D nanomaterials and MXene families design through industrially preferred ALD technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信