Unraveling the correlation between reduced thickness and enhanced electrical conductivity in HNO3-treated PEDOT:PSS ultrathin nanofilms

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minghua Kong , Qinglin Jiang , Wenkai Zhong , Zhongbin Wang , Yuguang Ma , Guangming Chen , Jiaqing He
{"title":"Unraveling the correlation between reduced thickness and enhanced electrical conductivity in HNO3-treated PEDOT:PSS ultrathin nanofilms","authors":"Minghua Kong ,&nbsp;Qinglin Jiang ,&nbsp;Wenkai Zhong ,&nbsp;Zhongbin Wang ,&nbsp;Yuguang Ma ,&nbsp;Guangming Chen ,&nbsp;Jiaqing He","doi":"10.1016/j.mtnano.2025.100574","DOIUrl":null,"url":null,"abstract":"<div><div>Although the research of organic polymer thermoelectric materials has witnessed significant progress in recent decade, the in-depth mechanism at molecular level still remains unclear for nanoscale films in thickness. Here, we report a strategy to dramatically enhance the electrical conductivity by reducing the thickness for ultrathin nanoscale films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). First, PEDOT:PSS nanofilms were prepared by spin coating and subsequent HNO<sub>3</sub> post-treatment. We found that the reduction of film thickness resulted in a remarkably improved electrical conductivity. When the thickness reduced from 23 nm to 15 nm, the electrical conductivity enhanced significantly from 1772 S cm<sup>−1</sup> to 3059 S cm<sup>−1</sup>. Moreover, the underlying mechanism was studied. With the decrease of film thickness, the content of the insulating PSSH greatly reduced, and the oxidation level of PEDOT chains increased. In addition, a fibrous morphology with large conductive micro-‍domains occurred, and the degree of crystallinity for PEDOT enhanced. The present study helps to prepare high-performance polymer thermoelectric materials and elucidate the carrier transport mechanism for nanoscale films of conducting polymers.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100574"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000057","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the research of organic polymer thermoelectric materials has witnessed significant progress in recent decade, the in-depth mechanism at molecular level still remains unclear for nanoscale films in thickness. Here, we report a strategy to dramatically enhance the electrical conductivity by reducing the thickness for ultrathin nanoscale films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). First, PEDOT:PSS nanofilms were prepared by spin coating and subsequent HNO3 post-treatment. We found that the reduction of film thickness resulted in a remarkably improved electrical conductivity. When the thickness reduced from 23 nm to 15 nm, the electrical conductivity enhanced significantly from 1772 S cm−1 to 3059 S cm−1. Moreover, the underlying mechanism was studied. With the decrease of film thickness, the content of the insulating PSSH greatly reduced, and the oxidation level of PEDOT chains increased. In addition, a fibrous morphology with large conductive micro-‍domains occurred, and the degree of crystallinity for PEDOT enhanced. The present study helps to prepare high-performance polymer thermoelectric materials and elucidate the carrier transport mechanism for nanoscale films of conducting polymers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信