Mengjia Yuan , Guojing Gan , Jingyi Bu , Yanxin Su , Hongyu Ma , Xianghe Liu , Yongqiang Zhang , Yanchun Gao
{"title":"A new multivariate composite drought index considering the lag time and the cumulative effects of drought","authors":"Mengjia Yuan , Guojing Gan , Jingyi Bu , Yanxin Su , Hongyu Ma , Xianghe Liu , Yongqiang Zhang , Yanchun Gao","doi":"10.1016/j.jhydrol.2025.132757","DOIUrl":null,"url":null,"abstract":"<div><div>Frequent and intense droughts pose significant threats to ecosystem health and human society under global change, making timely and rapid detection of such events crucial. Drought index is an essential tool for drought monitoring and risk assessment. Univariate drought indices cannot effectively characterize comprehensive drought characteristics and rarely account for the time lag between different types of droughts as well as their cumulative effects. Considering this, we developed a multivariate composite drought index (MCDI) using the Gringorten empirical formula based on four drought indices representing meteorological drought (Standardized Precipitation Actual Evapotranspiration Index, SPAEI), agricultural drought (Standardized Soil Moisture Index SSI), and hydrological drought (Standardized Runoff Index (SRI), and Water Storage Deficit Index (WSDI)). To verify the effectiveness of MCDI, we first calculated the Pearson correlation coefficients (PCC) between scPDSI (Self-calibrating Palmer Drought Severity Index) and MCDI in China. The results showed that the percentage of pixels with PCC greater than 0.5 was 70.02 % (p < 0.05). Then we analyzed the spatial/temporal drought trends in China and different hydroclimatic zones. Drought indices performed differently, and MCDI generally exhibited a “dry areas become wetter, wet areas become drier” pattern in China based on the trends shown by regional means. However, in terms of spatial distribution, the wet and dry trends in China are highly spatially heterogeneous. In addition, we selected two typical drought events that occurred in Arid/Semi-Arid (Inner Mongolia) and Humid/Semi-Humid (Yunnan Province) zones, respectively, to assess the ability of the MCDI to characterize drought. Compared with other drought indices and drought indicators (Soil Moisture and Solar-induced Chlorophyll Fluorescence), MCDI characterized the drought event most consistently with official records and responded faster to drought. Overall, the MCDI has good potential for drought monitoring and assessment.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"653 ","pages":"Article 132757"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425000952","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Frequent and intense droughts pose significant threats to ecosystem health and human society under global change, making timely and rapid detection of such events crucial. Drought index is an essential tool for drought monitoring and risk assessment. Univariate drought indices cannot effectively characterize comprehensive drought characteristics and rarely account for the time lag between different types of droughts as well as their cumulative effects. Considering this, we developed a multivariate composite drought index (MCDI) using the Gringorten empirical formula based on four drought indices representing meteorological drought (Standardized Precipitation Actual Evapotranspiration Index, SPAEI), agricultural drought (Standardized Soil Moisture Index SSI), and hydrological drought (Standardized Runoff Index (SRI), and Water Storage Deficit Index (WSDI)). To verify the effectiveness of MCDI, we first calculated the Pearson correlation coefficients (PCC) between scPDSI (Self-calibrating Palmer Drought Severity Index) and MCDI in China. The results showed that the percentage of pixels with PCC greater than 0.5 was 70.02 % (p < 0.05). Then we analyzed the spatial/temporal drought trends in China and different hydroclimatic zones. Drought indices performed differently, and MCDI generally exhibited a “dry areas become wetter, wet areas become drier” pattern in China based on the trends shown by regional means. However, in terms of spatial distribution, the wet and dry trends in China are highly spatially heterogeneous. In addition, we selected two typical drought events that occurred in Arid/Semi-Arid (Inner Mongolia) and Humid/Semi-Humid (Yunnan Province) zones, respectively, to assess the ability of the MCDI to characterize drought. Compared with other drought indices and drought indicators (Soil Moisture and Solar-induced Chlorophyll Fluorescence), MCDI characterized the drought event most consistently with official records and responded faster to drought. Overall, the MCDI has good potential for drought monitoring and assessment.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.