Qianzuo Zhao , Xuan Zhang , Chong Li , Yang Xu , Junyuan Fei , Fanghua Hao , Rulin Song
{"title":"Diverse vegetation response to meteorological drought from propagation perspective using event matching method","authors":"Qianzuo Zhao , Xuan Zhang , Chong Li , Yang Xu , Junyuan Fei , Fanghua Hao , Rulin Song","doi":"10.1016/j.jhydrol.2025.132776","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change has led to increased frequency, duration, and severity of meteorological drought (MD) events worldwide, causing significant and irreversible damage to terrestrial ecosystems. Understanding the impact of MD on diverse vegetation types is essential for ecological security and restoration. This study investigated vegetation responses to MD through a drought propagation framework, focusing on the Yangtze River Basin in China, which has been stricken by drought frequently in recent decades. By analyzing propagation characteristics, we assessed the sensitivity and vulnerability of different vegetation types to drought. Using Copula modeling, the occurrence probability of vegetation loss (VL) under varying MD conditions was estimated. Key findings include: (1) The majority of the Yangtze River Basin showed a high rate of MD to VL propagation. (2) Different vegetation types exhibited varied responses: woodlands had relatively low sensitivity and vulnerability, grasslands showed medium sensitivity with high vulnerability, while croplands demonstrated high sensitivity and moderate vulnerability. (3) The risk of extreme VL increased sharply with rising MD intensity. This framework and its findings could provide valuable insights for understanding vegetation responses to drought and inform strategies for managing vegetation loss.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"653 ","pages":"Article 132776"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425001143","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has led to increased frequency, duration, and severity of meteorological drought (MD) events worldwide, causing significant and irreversible damage to terrestrial ecosystems. Understanding the impact of MD on diverse vegetation types is essential for ecological security and restoration. This study investigated vegetation responses to MD through a drought propagation framework, focusing on the Yangtze River Basin in China, which has been stricken by drought frequently in recent decades. By analyzing propagation characteristics, we assessed the sensitivity and vulnerability of different vegetation types to drought. Using Copula modeling, the occurrence probability of vegetation loss (VL) under varying MD conditions was estimated. Key findings include: (1) The majority of the Yangtze River Basin showed a high rate of MD to VL propagation. (2) Different vegetation types exhibited varied responses: woodlands had relatively low sensitivity and vulnerability, grasslands showed medium sensitivity with high vulnerability, while croplands demonstrated high sensitivity and moderate vulnerability. (3) The risk of extreme VL increased sharply with rising MD intensity. This framework and its findings could provide valuable insights for understanding vegetation responses to drought and inform strategies for managing vegetation loss.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.