{"title":"Commutator-based operator splitting for linear port-Hamiltonian systems","authors":"Marius Mönch, Nicole Marheineke","doi":"10.1016/j.apnum.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop high-order splitting methods for linear port-Hamiltonian systems, focusing on preserving their intrinsic structure, particularly the dissipation inequality. Port-Hamiltonian systems are characterized by their ability to describe energy-conserving and dissipative processes, which is essential for the accurate simulation of physical systems. For autonomous systems, we introduce an energy-associated decomposition that exploits the system's energy properties. We present splitting schemes up to order six. In the non-autonomous case, we employ a port-based splitting. This special technique makes it possible to set up methods of arbitrary even order. Both splitting approaches are based on the properties of the commutator and ensure that the numerical schemes not only preserve the structure of the system but also faithfully fulfill the dissipation inequality. The proposed approaches are validated through theoretical analysis and numerical experiments.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"210 ","pages":"Pages 25-38"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003489","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop high-order splitting methods for linear port-Hamiltonian systems, focusing on preserving their intrinsic structure, particularly the dissipation inequality. Port-Hamiltonian systems are characterized by their ability to describe energy-conserving and dissipative processes, which is essential for the accurate simulation of physical systems. For autonomous systems, we introduce an energy-associated decomposition that exploits the system's energy properties. We present splitting schemes up to order six. In the non-autonomous case, we employ a port-based splitting. This special technique makes it possible to set up methods of arbitrary even order. Both splitting approaches are based on the properties of the commutator and ensure that the numerical schemes not only preserve the structure of the system but also faithfully fulfill the dissipation inequality. The proposed approaches are validated through theoretical analysis and numerical experiments.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.