Mariam Akter Mimona , Md Israfil Hossain Rimon , Fatema Tuz Zohura , Jannatul Mawya Sony , Samira Islam Rim , Md Mostafizur Rahman Arup , Md Hosne Mobarak
{"title":"Quantum dot nanomaterials: Empowering advances in optoelectronic devices","authors":"Mariam Akter Mimona , Md Israfil Hossain Rimon , Fatema Tuz Zohura , Jannatul Mawya Sony , Samira Islam Rim , Md Mostafizur Rahman Arup , Md Hosne Mobarak","doi":"10.1016/j.ceja.2025.100704","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum dot nanomaterials possess distinct optical and electrical properties from quantum confinement effects. These materials have notable benefits in diverse fields like solar energy conversion, bioimaging, and optoelectronic devices, owing to their high quantum yield and light emission that depends on their size. Nevertheless, the broad implementation of these technologies is impeded by problems such as exorbitant production costs, probable toxicity, and environmental instability. Novel synthesis strategies, such as nonorganometallic approaches and microwave-based procedures, are addressing these problems by strengthening safety, reducing expenses, and improving the photostability of quantum dots. This paper examines how quantum dots are created, methodologies for analyzing their properties, and possible uses in nanotechnology. It emphasizes how quantum dots have the ability to transform nanotechnology and overcome existing technological constraints. This review focuses on the most recent developments in quantum dot synthesis, exploring their diverse applications across multiple disciplines and discussing the ongoing endeavors to address the issues that come with them.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100704"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dot nanomaterials possess distinct optical and electrical properties from quantum confinement effects. These materials have notable benefits in diverse fields like solar energy conversion, bioimaging, and optoelectronic devices, owing to their high quantum yield and light emission that depends on their size. Nevertheless, the broad implementation of these technologies is impeded by problems such as exorbitant production costs, probable toxicity, and environmental instability. Novel synthesis strategies, such as nonorganometallic approaches and microwave-based procedures, are addressing these problems by strengthening safety, reducing expenses, and improving the photostability of quantum dots. This paper examines how quantum dots are created, methodologies for analyzing their properties, and possible uses in nanotechnology. It emphasizes how quantum dots have the ability to transform nanotechnology and overcome existing technological constraints. This review focuses on the most recent developments in quantum dot synthesis, exploring their diverse applications across multiple disciplines and discussing the ongoing endeavors to address the issues that come with them.