Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles

IF 5.5 Q1 ENGINEERING, CHEMICAL
José Juan Bolívar Caballero , Fereshteh Talkhab , Hanmin Yang , Samina Gulshan , Pengcheng Cao , Thomas Lewin , Pär G. Jönsson , Weihong Yang
{"title":"Renewable syngas production from electrified catalytic steam reforming of biomass pyrolysis volatiles","authors":"José Juan Bolívar Caballero ,&nbsp;Fereshteh Talkhab ,&nbsp;Hanmin Yang ,&nbsp;Samina Gulshan ,&nbsp;Pengcheng Cao ,&nbsp;Thomas Lewin ,&nbsp;Pär G. Jönsson ,&nbsp;Weihong Yang","doi":"10.1016/j.ceja.2025.100705","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrolysis of biomass plus catalytic reforming of its pyrolysis volatiles is a green alternative to produce solid (biochar) and gaseous (syngas) fuels that have several valuable applications; however, this catalytic process suffers from fast deactivation, and its energy consumption is yet to be studied, factors that determine the process’s feasibility in industrialisation. To address these issues, the direct electrification of a 3D-printed FeCrAl heater coated with 15.5 % Ni/Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> was tested in a parametric study in the catalytic steam reforming of biomass pyrolysis volatiles, in order to investigate the effect of the S/B ratio and space–time on the syngas yield and composition. Complete bio-oil reforming was obtained at a biomass feed rate of <span><math><mo>≤</mo></math></span> 1 g min<sup>−1</sup> and a S/B ratio of <span><math><mo>≥</mo></math></span> 2, and stability close to 100 % was estimated after over four hours of operation. Nonetheless, the produced syngas is rich in C<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> – C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> gases and moderately low in H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><mo>≈</mo></math></span> 2 wt %). The effect of the catalyst’s structure on the bio-oil reforming and heat efficiency was complemented using CFD simulations and compared to a simple geometry based on commercial extruded monoliths. Finally, the biomass-derived syngas upgrading to H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> production was assessed using different process simulations and compared to existing H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-producing technologies in terms of energy efficiency and emissions.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100705"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682112500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrolysis of biomass plus catalytic reforming of its pyrolysis volatiles is a green alternative to produce solid (biochar) and gaseous (syngas) fuels that have several valuable applications; however, this catalytic process suffers from fast deactivation, and its energy consumption is yet to be studied, factors that determine the process’s feasibility in industrialisation. To address these issues, the direct electrification of a 3D-printed FeCrAl heater coated with 15.5 % Ni/Al2O3 was tested in a parametric study in the catalytic steam reforming of biomass pyrolysis volatiles, in order to investigate the effect of the S/B ratio and space–time on the syngas yield and composition. Complete bio-oil reforming was obtained at a biomass feed rate of 1 g min−1 and a S/B ratio of 2, and stability close to 100 % was estimated after over four hours of operation. Nonetheless, the produced syngas is rich in C1 – C3 gases and moderately low in H2 ( 2 wt %). The effect of the catalyst’s structure on the bio-oil reforming and heat efficiency was complemented using CFD simulations and compared to a simple geometry based on commercial extruded monoliths. Finally, the biomass-derived syngas upgrading to H2 production was assessed using different process simulations and compared to existing H2-producing technologies in terms of energy efficiency and emissions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信