{"title":"One-bubble nodal blow-up for asymptotically critical stationary Schrödinger-type equations","authors":"Bruno Premoselli , Frédéric Robert","doi":"10.1016/j.jfa.2024.110808","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate in this work families <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>ε</mi><mo>></mo><mn>0</mn></mrow></msub></math></span> of sign-changing blowing-up solutions of asymptotically critical stationary nonlinear Schrödinger equations of the following type:<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>ε</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span></span></span> in a closed Riemannian manifold <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span> converges to <em>h</em> in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>→</mo><msubsup><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow><mrow><mo>⋆</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. Assuming that <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>ε</mi><mo>></mo><mn>0</mn></mrow></msub></math></span> blows-up as <em>a single sign-changing bubble</em>, we obtain necessary conditions for blow-up that constrain the localisation of blow-up points and exhibit a strong interaction between <em>h</em>, the geometry of <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and the bubble itself. These conditions are new and are a consequence of the sign-changing nature of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 6","pages":"Article 110808"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004968","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate in this work families of sign-changing blowing-up solutions of asymptotically critical stationary nonlinear Schrödinger equations of the following type: in a closed Riemannian manifold , where converges to h in and as . Assuming that blows-up as a single sign-changing bubble, we obtain necessary conditions for blow-up that constrain the localisation of blow-up points and exhibit a strong interaction between h, the geometry of and the bubble itself. These conditions are new and are a consequence of the sign-changing nature of .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis