{"title":"Cesàro-type operators on derivative-type Hilbert spaces of analytic functions: The proof of a conjecture","authors":"Qingze Lin , Huayou Xie","doi":"10.1016/j.jfa.2024.110813","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the boundedness and compactness of the Cesàro-type operators<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mrow><mo>(</mo><mspace></mspace><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>μ</mi><mo>(</mo><mi>ω</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <em>μ</em> is a complex Borel measure on the unit disc <span><math><mi>D</mi></math></span>, acting on two derivative-type Hilbert spaces of analytic functions defined in <span><math><mi>D</mi></math></span>, including the derivative Hardy space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the weighted Dirichlet space <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mo>(</mo><mo>−</mo><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mo>∞</mo><mo>)</mo></math></span>. As a by-product, we not only prove a conjecture (recently posed by Galanopoulos-Girela-Merchán) about the sufficient conditions for the compactness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> acting on weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mo>(</mo><mo>−</mo><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mo>∞</mo><mo>)</mo></math></span>, but also give a complete characterization for the boundedness and compactness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> between different weighted Bergman spaces. At last, we collect some unresolved problems and issues for further study.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 6","pages":"Article 110813"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624005019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the boundedness and compactness of the Cesàro-type operators where μ is a complex Borel measure on the unit disc , acting on two derivative-type Hilbert spaces of analytic functions defined in , including the derivative Hardy space and the weighted Dirichlet space . As a by-product, we not only prove a conjecture (recently posed by Galanopoulos-Girela-Merchán) about the sufficient conditions for the compactness of acting on weighted Bergman space , but also give a complete characterization for the boundedness and compactness of between different weighted Bergman spaces. At last, we collect some unresolved problems and issues for further study.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis