Cesàro-type operators on derivative-type Hilbert spaces of analytic functions: The proof of a conjecture

IF 1.7 2区 数学 Q1 MATHEMATICS
Qingze Lin , Huayou Xie
{"title":"Cesàro-type operators on derivative-type Hilbert spaces of analytic functions: The proof of a conjecture","authors":"Qingze Lin ,&nbsp;Huayou Xie","doi":"10.1016/j.jfa.2024.110813","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the boundedness and compactness of the Cesàro-type operators<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mrow><mo>(</mo><mspace></mspace><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>μ</mi><mo>(</mo><mi>ω</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <em>μ</em> is a complex Borel measure on the unit disc <span><math><mi>D</mi></math></span>, acting on two derivative-type Hilbert spaces of analytic functions defined in <span><math><mi>D</mi></math></span>, including the derivative Hardy space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the weighted Dirichlet space <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mo>(</mo><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mo>∞</mo><mo>)</mo></math></span>. As a by-product, we not only prove a conjecture (recently posed by Galanopoulos-Girela-Merchán) about the sufficient conditions for the compactness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> acting on weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mo>(</mo><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mo>∞</mo><mo>)</mo></math></span>, but also give a complete characterization for the boundedness and compactness of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> between different weighted Bergman spaces. At last, we collect some unresolved problems and issues for further study.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 6","pages":"Article 110813"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624005019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the boundedness and compactness of the Cesàro-type operatorsCμ(f)(z):=n=0(Dωndμ(ω))(k=0nak)zn,zD, where μ is a complex Borel measure on the unit disc D, acting on two derivative-type Hilbert spaces of analytic functions defined in D, including the derivative Hardy space S2 and the weighted Dirichlet space Dα2(1<α<). As a by-product, we not only prove a conjecture (recently posed by Galanopoulos-Girela-Merchán) about the sufficient conditions for the compactness of Cμ acting on weighted Bergman space Aα2(1<α<), but also give a complete characterization for the boundedness and compactness of Cμ between different weighted Bergman spaces. At last, we collect some unresolved problems and issues for further study.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信