Jijo Lukose , Megha Sunil , Elizabeth K Westhead , Santhosh Chidangil , Satheesh Kumar
{"title":"Gaining traction of optical modalities in the detection of microplastics","authors":"Jijo Lukose , Megha Sunil , Elizabeth K Westhead , Santhosh Chidangil , Satheesh Kumar","doi":"10.1016/j.coche.2024.101086","DOIUrl":null,"url":null,"abstract":"<div><div>The detection of microplastics is crucial, given their widespread occurrence as a global contaminant. Although numerous techniques exist for identifying small plastic particles, optical methods are increasingly acknowledged as efficient tools, particularly due to their noninvasive nature. The sub-nanoscale wavelength of light enables the identification of the unique characteristics of microscopic plastic particles through the use of technologies that integrate applied optics. This paper presents a comprehensive perspective of the various optical approaches used for the accurate detection and analysis of microplastics across different environmental settings.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101086"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221133982400087X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of microplastics is crucial, given their widespread occurrence as a global contaminant. Although numerous techniques exist for identifying small plastic particles, optical methods are increasingly acknowledged as efficient tools, particularly due to their noninvasive nature. The sub-nanoscale wavelength of light enables the identification of the unique characteristics of microscopic plastic particles through the use of technologies that integrate applied optics. This paper presents a comprehensive perspective of the various optical approaches used for the accurate detection and analysis of microplastics across different environmental settings.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.