Fracture behavior of binder jetting 3D printed cemented carbides: Influence of printing direction and testing configuration

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Cabezas , C. Berger , S. Bridy , E. Jiménez-Piqué , P. Moreno , J. Pötschke , L. Llanes
{"title":"Fracture behavior of binder jetting 3D printed cemented carbides: Influence of printing direction and testing configuration","authors":"L. Cabezas ,&nbsp;C. Berger ,&nbsp;S. Bridy ,&nbsp;E. Jiménez-Piqué ,&nbsp;P. Moreno ,&nbsp;J. Pötschke ,&nbsp;L. Llanes","doi":"10.1016/j.ijrmhm.2025.107069","DOIUrl":null,"url":null,"abstract":"<div><div>Cemented carbides exhibit an outstanding performance as materials for tools and components. As applications of these materials become more and more challenging, complex tool geometries are often needed to suit the extreme requirements. Within this context, Additive Manufacturing (AM) has emerged as a popular option, as they combine a group of processing techniques involving layer-by-layer printing. In general, AMed samples are expected to exhibit characteristics linked to the layer-by-layer wise shaping route; and hence, a dependence of the mechanical properties on layer directionality may come out. It is then the main objective of this study to investigate, document and understand the fracture behavior of WC-12<sub>wt.</sub>Co samples fabricated via binder jetting printing (BJT), as a function of layer assemblage orientation. In doing so, specimens corresponding to four combinations of two printing directions and two testing configurations were studied. Use of samples micronotched by means of ultrashort pulsed laser ablation allowed to conclude that, similar to microstructure and hardness, fracture toughness of BJT cemented carbides exhibits an isotropic behavior. However, this is not the case for flexural strength, property for which a strong dependence on the relative orientation of layer assemblage is assessed. In this regard, higher strength and wider data dispersion are attained as loading is applied perpendicular to planes containing layer interfaces, as compared to the parallel case. Similar characteristic strength levels together with relatively lower Weibull modulii, as compared to conventionally manufactured WC-Co grades with similar microstructures, are determined. Extensive and detailed fractographic inspection of broken surfaces allows to conclude that specific location, orientation and distribution of flaws intrinsic to layer interfaces as well as printing route followed, depending on testing configuration, are key factors for defining strength level and dispersion in each case.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"128 ","pages":"Article 107069"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cemented carbides exhibit an outstanding performance as materials for tools and components. As applications of these materials become more and more challenging, complex tool geometries are often needed to suit the extreme requirements. Within this context, Additive Manufacturing (AM) has emerged as a popular option, as they combine a group of processing techniques involving layer-by-layer printing. In general, AMed samples are expected to exhibit characteristics linked to the layer-by-layer wise shaping route; and hence, a dependence of the mechanical properties on layer directionality may come out. It is then the main objective of this study to investigate, document and understand the fracture behavior of WC-12wt.Co samples fabricated via binder jetting printing (BJT), as a function of layer assemblage orientation. In doing so, specimens corresponding to four combinations of two printing directions and two testing configurations were studied. Use of samples micronotched by means of ultrashort pulsed laser ablation allowed to conclude that, similar to microstructure and hardness, fracture toughness of BJT cemented carbides exhibits an isotropic behavior. However, this is not the case for flexural strength, property for which a strong dependence on the relative orientation of layer assemblage is assessed. In this regard, higher strength and wider data dispersion are attained as loading is applied perpendicular to planes containing layer interfaces, as compared to the parallel case. Similar characteristic strength levels together with relatively lower Weibull modulii, as compared to conventionally manufactured WC-Co grades with similar microstructures, are determined. Extensive and detailed fractographic inspection of broken surfaces allows to conclude that specific location, orientation and distribution of flaws intrinsic to layer interfaces as well as printing route followed, depending on testing configuration, are key factors for defining strength level and dispersion in each case.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信