Syngas production from textile dyeing sludge via carbon dioxide-assisted pyrolysis

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jonghyun Park , Yiu Fai Tsang , Doyeon Lee , Seong-Heon Cho , Eilhann E. Kwon
{"title":"Syngas production from textile dyeing sludge via carbon dioxide-assisted pyrolysis","authors":"Jonghyun Park ,&nbsp;Yiu Fai Tsang ,&nbsp;Doyeon Lee ,&nbsp;Seong-Heon Cho ,&nbsp;Eilhann E. Kwon","doi":"10.1016/j.jaap.2024.106916","DOIUrl":null,"url":null,"abstract":"<div><div>The textile dyeing process utilizing synthetic dyes generates by-products known as textile dyeing sludge (TDS), which comprises various harmful chemicals. However, disposal of TDS through conventional methods of waste present significant environmental hazards, leading to the dissemination of hazardous chemicals into the ecosystem. Therefore, this study introduces thermo-chemical platform for the disposal of TDS. Specifically, this study employs CO<sub>2</sub> as a reactive feedstock to maximize the production of syngas and minimize formation of toxic chemicals. Prior to pyrolysis, the hazardous potential of TDS was qualitatively evaluated. The pyrolysis of TDS under CO<sub>2</sub> environments demonstrated gas-phase reactions between volatile substances and CO<sub>2</sub>. These reactions led to increased CO production while simultaneously reducing the formation of toxic compounds such as benzene derivatives and polycyclic aromatic hydrocarbons (PAHs) within pyrogenic oil. The reduction in benzene derivatives and PAHs was quantified as −10.31 % under single-step pyrolysis and −25.16 % under multi-step pyrolysis. To expedite kinetics of gas-phase reactions, Ni-based catalyst was employed for catalytic pyrolysis of TDS. Compared to non-catalytic pyrolysis, the Ni catalyst enhanced CO production by expediting gas-phase reactions. Compared to multi-step pyrolysis under the CO<sub>2</sub> condition (3.81 mol%), the CO formation from catalytic pyrolysis under CO<sub>2</sub> condition exhibited significant enhancement (15.35 mol%). Consequently, all experimental results highlight potential of pyrolysis with CO<sub>2</sub> as a promising method for the disposal of TDS, while converting it into valuable energy resources.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"186 ","pages":"Article 106916"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024005710","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The textile dyeing process utilizing synthetic dyes generates by-products known as textile dyeing sludge (TDS), which comprises various harmful chemicals. However, disposal of TDS through conventional methods of waste present significant environmental hazards, leading to the dissemination of hazardous chemicals into the ecosystem. Therefore, this study introduces thermo-chemical platform for the disposal of TDS. Specifically, this study employs CO2 as a reactive feedstock to maximize the production of syngas and minimize formation of toxic chemicals. Prior to pyrolysis, the hazardous potential of TDS was qualitatively evaluated. The pyrolysis of TDS under CO2 environments demonstrated gas-phase reactions between volatile substances and CO2. These reactions led to increased CO production while simultaneously reducing the formation of toxic compounds such as benzene derivatives and polycyclic aromatic hydrocarbons (PAHs) within pyrogenic oil. The reduction in benzene derivatives and PAHs was quantified as −10.31 % under single-step pyrolysis and −25.16 % under multi-step pyrolysis. To expedite kinetics of gas-phase reactions, Ni-based catalyst was employed for catalytic pyrolysis of TDS. Compared to non-catalytic pyrolysis, the Ni catalyst enhanced CO production by expediting gas-phase reactions. Compared to multi-step pyrolysis under the CO2 condition (3.81 mol%), the CO formation from catalytic pyrolysis under CO2 condition exhibited significant enhancement (15.35 mol%). Consequently, all experimental results highlight potential of pyrolysis with CO2 as a promising method for the disposal of TDS, while converting it into valuable energy resources.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信