Identification of DNA methylation signatures in follicular-patterned thyroid tumors

IF 2.9 4区 医学 Q2 PATHOLOGY
Truong Phan-Xuan Nguyen , Hoang Minh Nguyen , Loi Phuc Luu , Dat Quoc Ngo , Shanop Shuangshoti , Nakarin Kitkumthorn , Somboon Keelawat
{"title":"Identification of DNA methylation signatures in follicular-patterned thyroid tumors","authors":"Truong Phan-Xuan Nguyen ,&nbsp;Hoang Minh Nguyen ,&nbsp;Loi Phuc Luu ,&nbsp;Dat Quoc Ngo ,&nbsp;Shanop Shuangshoti ,&nbsp;Nakarin Kitkumthorn ,&nbsp;Somboon Keelawat","doi":"10.1016/j.prp.2024.155794","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Follicular-patterned thyroid tumors (FPTTs) are frequently encountered in thyroid pathology, encompassing follicular adenoma (FA), follicular thyroid carcinoma (FTC), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), and follicular variant of papillary thyroid carcinoma (fvPTC). Recently, a distinct entity termed differentiated high-grade thyroid carcinoma has been described by the 5th edition of the WHO classification of the thyroid tumors, categorized as either high-grade fvPTC, high-grade FTC or high-grade oncocytic carcinoma of the thyroid (OCA). Accurate differentiation among these lesions, particular between the benign (FA), borderline (NIFTP) and malignant neoplasms (FTC and fvPTC), remains a challenge in both histopathological and cytological diagnoses. This study aimed to develop a novel molecular diagnostic approach utilizing DNA methylation to distinguish between these thyroid tumors.</div></div><div><h3>Materials and methods</h3><div>DNA methylation signatures and machine learning were employed to construct classification models for FPTTs. A total of 178 thyroid samples from the Gene Expression Omnibus were analyzed. The models were validated using two independent cohorts.</div></div><div><h3>Results</h3><div>13 cytosine-guanine dinucleotides (CpGs) exhibited significant differences in methylation levels among FA, FTC, NIFTP and fvPTC. Notably, NIFTP showed hypomethylation compared to other subtypes. A Random Forest classifier, based on the methylation status of these 13 CpGs, effectively categorized the four tumor subtypes (AUC = 0.86, accuracy = 0.70 for internal data, and AUC approximately 0.80 for validation data). The selected CpGs were significantly associated with the tumor progression pathway.</div></div><div><h3>Conclusion</h3><div>This study established a robust method for categorizing FPTTs based on DNA methylation patterns. The identified DNA methylation approach holds clinical promise for efficiently diagnosing thyroid neoplasms.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"266 ","pages":"Article 155794"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824007052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Follicular-patterned thyroid tumors (FPTTs) are frequently encountered in thyroid pathology, encompassing follicular adenoma (FA), follicular thyroid carcinoma (FTC), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), and follicular variant of papillary thyroid carcinoma (fvPTC). Recently, a distinct entity termed differentiated high-grade thyroid carcinoma has been described by the 5th edition of the WHO classification of the thyroid tumors, categorized as either high-grade fvPTC, high-grade FTC or high-grade oncocytic carcinoma of the thyroid (OCA). Accurate differentiation among these lesions, particular between the benign (FA), borderline (NIFTP) and malignant neoplasms (FTC and fvPTC), remains a challenge in both histopathological and cytological diagnoses. This study aimed to develop a novel molecular diagnostic approach utilizing DNA methylation to distinguish between these thyroid tumors.

Materials and methods

DNA methylation signatures and machine learning were employed to construct classification models for FPTTs. A total of 178 thyroid samples from the Gene Expression Omnibus were analyzed. The models were validated using two independent cohorts.

Results

13 cytosine-guanine dinucleotides (CpGs) exhibited significant differences in methylation levels among FA, FTC, NIFTP and fvPTC. Notably, NIFTP showed hypomethylation compared to other subtypes. A Random Forest classifier, based on the methylation status of these 13 CpGs, effectively categorized the four tumor subtypes (AUC = 0.86, accuracy = 0.70 for internal data, and AUC approximately 0.80 for validation data). The selected CpGs were significantly associated with the tumor progression pathway.

Conclusion

This study established a robust method for categorizing FPTTs based on DNA methylation patterns. The identified DNA methylation approach holds clinical promise for efficiently diagnosing thyroid neoplasms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.60%
发文量
405
审稿时长
24 days
期刊介绍: Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信