{"title":"Improving catalysts and operating conditions using machine learning in Fischer-Tropsch synthesis of jet fuels (C8-C16)","authors":"Parisa Shafiee, Bogdan Dorneanu, Harvey Arellano-Garcia","doi":"10.1016/j.ceja.2024.100702","DOIUrl":null,"url":null,"abstract":"<div><div>Fischer-Tropsch synthesis (FTS) offers a promising route for producing sustainable jet fuels from syngas. However, optimizing catalyst design and operating conditions for the ideal C8-C16 jet fuel range is challenging. Thus, this work introduces a machine learning (ML) framework to enhance Co/Fe-supported FTS catalysts and optimize their operating conditions for a better jet fuel selectivity. For this purpose, a dataset was implemented with 21 features, including catalyst structure, preparation method, activation procedure, and FTS operating parameters. Moreover, various machine-learning models (Random Forest (RF), Gradient Boosted, CatBoost, and artificial neural networks (ANN)) were evaluated to predict CO conversion and C8-C16 selectivity. Among these, the CatBoost model achieved the highest accuracy (R<sup>2</sup> = 0.99). Feature analysis revealed that FTS operational conditions mainly affect CO conversion (37.9 %), while catalyst properties were primarily crucial for C8-C16 selectivity (40.6 %). The proposed ML framework provides a first powerful tool for the rational design of FTS catalysts and operating conditions to maximize jet fuel productivity.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100702"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fischer-Tropsch synthesis (FTS) offers a promising route for producing sustainable jet fuels from syngas. However, optimizing catalyst design and operating conditions for the ideal C8-C16 jet fuel range is challenging. Thus, this work introduces a machine learning (ML) framework to enhance Co/Fe-supported FTS catalysts and optimize their operating conditions for a better jet fuel selectivity. For this purpose, a dataset was implemented with 21 features, including catalyst structure, preparation method, activation procedure, and FTS operating parameters. Moreover, various machine-learning models (Random Forest (RF), Gradient Boosted, CatBoost, and artificial neural networks (ANN)) were evaluated to predict CO conversion and C8-C16 selectivity. Among these, the CatBoost model achieved the highest accuracy (R2 = 0.99). Feature analysis revealed that FTS operational conditions mainly affect CO conversion (37.9 %), while catalyst properties were primarily crucial for C8-C16 selectivity (40.6 %). The proposed ML framework provides a first powerful tool for the rational design of FTS catalysts and operating conditions to maximize jet fuel productivity.