Improving catalysts and operating conditions using machine learning in Fischer-Tropsch synthesis of jet fuels (C8-C16)

IF 5.5 Q1 ENGINEERING, CHEMICAL
Parisa Shafiee, Bogdan Dorneanu, Harvey Arellano-Garcia
{"title":"Improving catalysts and operating conditions using machine learning in Fischer-Tropsch synthesis of jet fuels (C8-C16)","authors":"Parisa Shafiee,&nbsp;Bogdan Dorneanu,&nbsp;Harvey Arellano-Garcia","doi":"10.1016/j.ceja.2024.100702","DOIUrl":null,"url":null,"abstract":"<div><div>Fischer-Tropsch synthesis (FTS) offers a promising route for producing sustainable jet fuels from syngas. However, optimizing catalyst design and operating conditions for the ideal C8-C16 jet fuel range is challenging. Thus, this work introduces a machine learning (ML) framework to enhance Co/Fe-supported FTS catalysts and optimize their operating conditions for a better jet fuel selectivity. For this purpose, a dataset was implemented with 21 features, including catalyst structure, preparation method, activation procedure, and FTS operating parameters. Moreover, various machine-learning models (Random Forest (RF), Gradient Boosted, CatBoost, and artificial neural networks (ANN)) were evaluated to predict CO conversion and C8-C16 selectivity. Among these, the CatBoost model achieved the highest accuracy (R<sup>2</sup> = 0.99). Feature analysis revealed that FTS operational conditions mainly affect CO conversion (37.9 %), while catalyst properties were primarily crucial for C8-C16 selectivity (40.6 %). The proposed ML framework provides a first powerful tool for the rational design of FTS catalysts and operating conditions to maximize jet fuel productivity.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100702"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fischer-Tropsch synthesis (FTS) offers a promising route for producing sustainable jet fuels from syngas. However, optimizing catalyst design and operating conditions for the ideal C8-C16 jet fuel range is challenging. Thus, this work introduces a machine learning (ML) framework to enhance Co/Fe-supported FTS catalysts and optimize their operating conditions for a better jet fuel selectivity. For this purpose, a dataset was implemented with 21 features, including catalyst structure, preparation method, activation procedure, and FTS operating parameters. Moreover, various machine-learning models (Random Forest (RF), Gradient Boosted, CatBoost, and artificial neural networks (ANN)) were evaluated to predict CO conversion and C8-C16 selectivity. Among these, the CatBoost model achieved the highest accuracy (R2 = 0.99). Feature analysis revealed that FTS operational conditions mainly affect CO conversion (37.9 %), while catalyst properties were primarily crucial for C8-C16 selectivity (40.6 %). The proposed ML framework provides a first powerful tool for the rational design of FTS catalysts and operating conditions to maximize jet fuel productivity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信