Spatio-temporal pattern formation mechanism of an epidemic-like information propagation model with diffusion behavior

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yuxuan Pan , Shuling Shen , Linhe Zhu
{"title":"Spatio-temporal pattern formation mechanism of an epidemic-like information propagation model with diffusion behavior","authors":"Yuxuan Pan ,&nbsp;Shuling Shen ,&nbsp;Linhe Zhu","doi":"10.1016/j.asej.2024.103244","DOIUrl":null,"url":null,"abstract":"<div><div>In order to effectively warn against and control the spread of online rumors, it is essential to research the dynamic process of rumor propagation. This paper presents a reaction-diffusion rumor propagation model with a time delay. We analyze the sufficient conditions for the existence of rumor propagation equilibrium points on continuous and complex networks, as well as the conditions for generating Turing bifurcation due to diffusion. Additionally, we derive the amplitude equation of the model to identify the parameter values corresponding to various pattern types. We validate the derivation of the amplitude equation through a series of numerical simulations, providing a robust method for accurately determining the state of rumor propagation. Our study investigates the effect of cross-diffusion coefficients on rumor propagation on the continuous space and finds that these coefficients suppress rumor propagation. Consequently, fostering connections among the public can enhance the dissemination of accurate information and mitigate rumor diffusion. Furthermore, we assess the impact of network node quantity on rumor dissemination on complex networks. Although the number of nodes does not directly influence rumor propagation, a higher node count facilitates a more precise evaluation of rumor propagation status. There is undoubtedly that this is conducive to controlling rumors for managers.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 1","pages":"Article 103244"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924006257","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to effectively warn against and control the spread of online rumors, it is essential to research the dynamic process of rumor propagation. This paper presents a reaction-diffusion rumor propagation model with a time delay. We analyze the sufficient conditions for the existence of rumor propagation equilibrium points on continuous and complex networks, as well as the conditions for generating Turing bifurcation due to diffusion. Additionally, we derive the amplitude equation of the model to identify the parameter values corresponding to various pattern types. We validate the derivation of the amplitude equation through a series of numerical simulations, providing a robust method for accurately determining the state of rumor propagation. Our study investigates the effect of cross-diffusion coefficients on rumor propagation on the continuous space and finds that these coefficients suppress rumor propagation. Consequently, fostering connections among the public can enhance the dissemination of accurate information and mitigate rumor diffusion. Furthermore, we assess the impact of network node quantity on rumor dissemination on complex networks. Although the number of nodes does not directly influence rumor propagation, a higher node count facilitates a more precise evaluation of rumor propagation status. There is undoubtedly that this is conducive to controlling rumors for managers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信