Houssam-Eddine Nemamcha , Nhu-Nang Vu , Jaspal Singh , Dinh Son Tran , Cédrik Boisvert , Phuong Nguyen-Tri
{"title":"Facile green synthesis of highly efficient carbon nanospheres@g-C3N4 catalysts for photodegradation of Bisphenol A","authors":"Houssam-Eddine Nemamcha , Nhu-Nang Vu , Jaspal Singh , Dinh Son Tran , Cédrik Boisvert , Phuong Nguyen-Tri","doi":"10.1016/j.cattod.2025.115201","DOIUrl":null,"url":null,"abstract":"<div><div>Novel Carbon nanospheres@graphitic-carbon nitride nanocomposites were successfully synthesized by a simple, inexpensive and ecofriendly chemical method (hydrothermal). The as-prepared materials Carbon nanospheres (CNS), pure g-C<sub>3</sub>N<sub>4</sub>, CNS@g-C<sub>3</sub>N<sub>4</sub> and heat treated (HT)CNS@g-C<sub>3</sub>N<sub>4</sub> were characterized by FTIR, Raman spectroscopy, XPS, XRD, TEM, EDX and N<sub>2</sub>-adsorption desorption, UV-Visible DRS, and Photoluminescence (PL). The photodegradation of bisphenol A (a typical endocrine disruptor) using photocatalysts was followed by HPLC-UV technique. The results show that (HT)CNS@g-C<sub>3</sub>N<sub>4</sub> exhibits high photocatalytic efficiency for BPA degradation (99 %), which is 45 and 8.5 times greater than that of pure g-C<sub>3</sub>N<sub>4</sub> and CNS@g-C<sub>3</sub>N<sub>4</sub>, respectively. Additionally, the (HT)CNS@g-C<sub>3</sub>N<sub>4</sub> photocatalyst displays a high constant rate of apparent pseudo-first-order (k<sub>app</sub> = 94.78 × 10<sup>−3</sup> min<sup>–1</sup>) and low electrical energy per order consumption (EEO = 0.24 kWh/m<sup>3</sup>). These excellent abilities of (HT)CNS@g-C<sub>3</sub>N<sub>4</sub> were attributed to its excellent morphological, structural and optical properties induced during the heat treatment: (<em>i</em>) The presence of CNS reduces the bad gap and consequently enhances the absorption of visible light and promotes the charge carriers separation, <em>(ii)</em> the high specific surface area and porosity and therefore availability of a high number of active sites to interact with BPA, (<em>iii</em>) high presence of different functional groups on the catalyst surface that enhance the interaction between the surface and BPA molecules, and (<em>iv</em>) The heterojunction interface created between CNS and g-C<sub>3</sub>N<sub>4</sub> constitutes an efficient structure that enhances interfacial charge transfer and prevents direct recombination of charge carriers originating from g-C<sub>3</sub>N<sub>4</sub>. Based on the identification of the products and intermediates of the BPA photodegradation reaction, by HPLC−MS, a plausible mechanism of photocatalytic degradation of BPA using the prepared photocatalysts was proposed.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"450 ","pages":"Article 115201"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000197","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Novel Carbon nanospheres@graphitic-carbon nitride nanocomposites were successfully synthesized by a simple, inexpensive and ecofriendly chemical method (hydrothermal). The as-prepared materials Carbon nanospheres (CNS), pure g-C3N4, CNS@g-C3N4 and heat treated (HT)CNS@g-C3N4 were characterized by FTIR, Raman spectroscopy, XPS, XRD, TEM, EDX and N2-adsorption desorption, UV-Visible DRS, and Photoluminescence (PL). The photodegradation of bisphenol A (a typical endocrine disruptor) using photocatalysts was followed by HPLC-UV technique. The results show that (HT)CNS@g-C3N4 exhibits high photocatalytic efficiency for BPA degradation (99 %), which is 45 and 8.5 times greater than that of pure g-C3N4 and CNS@g-C3N4, respectively. Additionally, the (HT)CNS@g-C3N4 photocatalyst displays a high constant rate of apparent pseudo-first-order (kapp = 94.78 × 10−3 min–1) and low electrical energy per order consumption (EEO = 0.24 kWh/m3). These excellent abilities of (HT)CNS@g-C3N4 were attributed to its excellent morphological, structural and optical properties induced during the heat treatment: (i) The presence of CNS reduces the bad gap and consequently enhances the absorption of visible light and promotes the charge carriers separation, (ii) the high specific surface area and porosity and therefore availability of a high number of active sites to interact with BPA, (iii) high presence of different functional groups on the catalyst surface that enhance the interaction between the surface and BPA molecules, and (iv) The heterojunction interface created between CNS and g-C3N4 constitutes an efficient structure that enhances interfacial charge transfer and prevents direct recombination of charge carriers originating from g-C3N4. Based on the identification of the products and intermediates of the BPA photodegradation reaction, by HPLC−MS, a plausible mechanism of photocatalytic degradation of BPA using the prepared photocatalysts was proposed.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.