Design and computational analysis of nitrobenzofurazan-based non-fullerene acceptors for organic solar cells: A DFT and molecular dynamics simulation study

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Balkis Abdelaziz , Salah Bouazizi , Bouzid Gassoumi , Salvatore Patanè , Sahbi Ayachi
{"title":"Design and computational analysis of nitrobenzofurazan-based non-fullerene acceptors for organic solar cells: A DFT and molecular dynamics simulation study","authors":"Balkis Abdelaziz ,&nbsp;Salah Bouazizi ,&nbsp;Bouzid Gassoumi ,&nbsp;Salvatore Patanè ,&nbsp;Sahbi Ayachi","doi":"10.1016/j.synthmet.2025.117846","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the design of innovative nitrobenzofurazan (NBD)-based non-fullerene acceptors (NFA), labeled as Ai (i = 1–5), using density functional theory (DFT) and molecular dynamics (MD) simulations in acetonitrile. These donor-acceptor small molecules incorporate nitro or fluorine substituents into the NBD core to enhance non-fullerene organic solar cells (NF-OSCs) performance. The electron-withdrawing nature of these groups reduces frontier orbital energy levels, improving electronic properties critical for device efficiency. Intermolecular energies, including electrostatic and Lennard-Jones interactions, were calculated for Ai/acetonitrile mixtures, providing insight into interaction potentials. DFT and TD-DFT analyses revealed the molecules’ geometric structure, optoelectronic features, optical behavior, and charge transport properties of the designed molecules. These compounds exhibit narrower band gaps ranging from 2.25 to 1.67 eV, along with high absorption maximum (λ<sub>max</sub> between 463 and 472 nm). Furthermore, the lower binding energies (E<sub>b</sub> = 0.48–0.55 eV), indicate enhanced exciton dissociation efficiency, driven by significant charge transfer from donor to acceptor, as confirmed by FMOs, PDOS, MEP, and TDM analyses. The designed molecules exhibit remarkable photovoltaic performance, including higher open-circuit voltages (V<sub>oc</sub>) and large fill factors (FF). Among these, A<sub>4</sub> emerges as the most promising candidate due to its reduced optical bandgap, maximum absorption wavelength, and superior electronic and photovoltaic properties. Blending A<sub>4</sub> with an NBD-based donor highlights efficient charge transfer dynamics, reinforcing its strong potential for practical applications in OSCs. This work highlights the potential of NBD-based NFAs in advancing NF-OSC technology, providing a platform for designing efficient, high-performance photovoltaic materials.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117846"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the design of innovative nitrobenzofurazan (NBD)-based non-fullerene acceptors (NFA), labeled as Ai (i = 1–5), using density functional theory (DFT) and molecular dynamics (MD) simulations in acetonitrile. These donor-acceptor small molecules incorporate nitro or fluorine substituents into the NBD core to enhance non-fullerene organic solar cells (NF-OSCs) performance. The electron-withdrawing nature of these groups reduces frontier orbital energy levels, improving electronic properties critical for device efficiency. Intermolecular energies, including electrostatic and Lennard-Jones interactions, were calculated for Ai/acetonitrile mixtures, providing insight into interaction potentials. DFT and TD-DFT analyses revealed the molecules’ geometric structure, optoelectronic features, optical behavior, and charge transport properties of the designed molecules. These compounds exhibit narrower band gaps ranging from 2.25 to 1.67 eV, along with high absorption maximum (λmax between 463 and 472 nm). Furthermore, the lower binding energies (Eb = 0.48–0.55 eV), indicate enhanced exciton dissociation efficiency, driven by significant charge transfer from donor to acceptor, as confirmed by FMOs, PDOS, MEP, and TDM analyses. The designed molecules exhibit remarkable photovoltaic performance, including higher open-circuit voltages (Voc) and large fill factors (FF). Among these, A4 emerges as the most promising candidate due to its reduced optical bandgap, maximum absorption wavelength, and superior electronic and photovoltaic properties. Blending A4 with an NBD-based donor highlights efficient charge transfer dynamics, reinforcing its strong potential for practical applications in OSCs. This work highlights the potential of NBD-based NFAs in advancing NF-OSC technology, providing a platform for designing efficient, high-performance photovoltaic materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信