Shubin calculi for actions of graded Lie groups

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Eske Ewert, Philipp Schmitt
{"title":"Shubin calculi for actions of graded Lie groups","authors":"Eske Ewert,&nbsp;Philipp Schmitt","doi":"10.1016/j.bulsci.2024.103572","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we develop a calculus of Shubin type pseudodifferential operators on certain non-compact spaces, using a groupoid approach similar to the one of van Erp and Yuncken. More concretely, we consider actions of graded Lie groups on graded vector spaces and study pseudodifferential operators that generalize fundamental vector fields and multiplication by polynomials. Our two main examples of elliptic operators in this calculus are Rockland operators with a potential and the generalizations of the harmonic oscillator to the Heisenberg group due to Rottensteiner–Ruzhansky.</div><div>Deforming the action of the graded group, we define a tangent groupoid which connects pseudodifferential operators to their principal (co)symbols. We show that our operators form a calculus that is asymptotically complete. Elliptic elements in the calculus have parametrices, are hypoelliptic, and can be characterized in terms of a Rockland condition. Moreover, we study the mapping properties as well as the spectra of our operators on Sobolev spaces and compare our calculus to the Shubin calculus on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and its anisotropic generalizations.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103572"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we develop a calculus of Shubin type pseudodifferential operators on certain non-compact spaces, using a groupoid approach similar to the one of van Erp and Yuncken. More concretely, we consider actions of graded Lie groups on graded vector spaces and study pseudodifferential operators that generalize fundamental vector fields and multiplication by polynomials. Our two main examples of elliptic operators in this calculus are Rockland operators with a potential and the generalizations of the harmonic oscillator to the Heisenberg group due to Rottensteiner–Ruzhansky.
Deforming the action of the graded group, we define a tangent groupoid which connects pseudodifferential operators to their principal (co)symbols. We show that our operators form a calculus that is asymptotically complete. Elliptic elements in the calculus have parametrices, are hypoelliptic, and can be characterized in terms of a Rockland condition. Moreover, we study the mapping properties as well as the spectra of our operators on Sobolev spaces and compare our calculus to the Shubin calculus on Rn and its anisotropic generalizations.
分级李群作用的舒宾演算
在本文中,我们利用类似于van Erp和Yuncken的类群方法,发展了非紧空间上的Shubin型伪微分算子的微积分。更具体地说,我们考虑了梯度李群在梯度向量空间上的作用,并研究了推广基本向量场和多项式乘法的伪微分算子。在这个微积分中,我们的两个主要椭圆算子的例子是带势的Rockland算子和由Rottensteiner-Ruzhansky将谐振子推广到海森堡群。通过对渐变群作用的变形,我们定义了一个将伪微分算子与其主(co)符号连接起来的切群。我们证明了这些算子构成了一个渐近完全的微积分。微积分中的椭圆元具有参数,是准椭圆的,并且可以用Rockland条件来表征。此外,我们研究了Sobolev空间上算子的映射性质和谱,并将我们的演算与Rn上的Shubin演算及其各向异性推广进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信