Molla Basir Ahamed , Vasudevarao Allu , Himadri Halder
{"title":"Bohr inequalities for the class of unimodular bounded functions on shifted disks","authors":"Molla Basir Ahamed , Vasudevarao Allu , Himadri Halder","doi":"10.1016/j.bulsci.2025.103577","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> denote the class of analytic functions in the unit disk <span><math><mi>D</mi><mo>:</mo><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></math></span>. The classical Bohr's inequality <span><span>[21]</span></span> states that if <span><math><mi>f</mi><mo>∈</mo><mi>H</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is given by <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo><</mo><mn>1</mn></math></span> for <span><math><mi>z</mi><mo>∈</mo><mi>D</mi></math></span>, then<span><span><span><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≤</mo><mn>1</mn><mspace></mspace><mspace></mspace><mtext>for</mtext><mspace></mspace><mspace></mspace><mi>r</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span></span></span> and the constant 1/3 cannot be improved. The constant 1/3 is known as Bohr radius. In this paper, we study Bohr phenomenon for classes of analytic as well as harmonic mappings on shifted disks. We prove several sharp results on improved Bohr radius for the classes of analytic functions as well as for the class of harmonic mappings on certain shifted disks.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103577"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972500003X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the class of analytic functions in the unit disk . The classical Bohr's inequality [21] states that if is given by such that for , then and the constant 1/3 cannot be improved. The constant 1/3 is known as Bohr radius. In this paper, we study Bohr phenomenon for classes of analytic as well as harmonic mappings on shifted disks. We prove several sharp results on improved Bohr radius for the classes of analytic functions as well as for the class of harmonic mappings on certain shifted disks.