Bohr inequalities for the class of unimodular bounded functions on shifted disks

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Molla Basir Ahamed , Vasudevarao Allu , Himadri Halder
{"title":"Bohr inequalities for the class of unimodular bounded functions on shifted disks","authors":"Molla Basir Ahamed ,&nbsp;Vasudevarao Allu ,&nbsp;Himadri Halder","doi":"10.1016/j.bulsci.2025.103577","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> denote the class of analytic functions in the unit disk <span><math><mi>D</mi><mo>:</mo><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>&lt;</mo><mn>1</mn><mo>}</mo></math></span>. The classical Bohr's inequality <span><span>[21]</span></span> states that if <span><math><mi>f</mi><mo>∈</mo><mi>H</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is given by <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>&lt;</mo><mn>1</mn></math></span> for <span><math><mi>z</mi><mo>∈</mo><mi>D</mi></math></span>, then<span><span><span><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≤</mo><mn>1</mn><mspace></mspace><mspace></mspace><mtext>for</mtext><mspace></mspace><mspace></mspace><mi>r</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span></span></span> and the constant 1/3 cannot be improved. The constant 1/3 is known as Bohr radius. In this paper, we study Bohr phenomenon for classes of analytic as well as harmonic mappings on shifted disks. We prove several sharp results on improved Bohr radius for the classes of analytic functions as well as for the class of harmonic mappings on certain shifted disks.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103577"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972500003X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let H(D) denote the class of analytic functions in the unit disk D:={zC:|z|<1}. The classical Bohr's inequality [21] states that if fH(D) is given by f(z)=n=0anzn such that |f(z)|<1 for zD, thenn=0|an|rn1forr13 and the constant 1/3 cannot be improved. The constant 1/3 is known as Bohr radius. In this paper, we study Bohr phenomenon for classes of analytic as well as harmonic mappings on shifted disks. We prove several sharp results on improved Bohr radius for the classes of analytic functions as well as for the class of harmonic mappings on certain shifted disks.
移盘上一类非模有界函数的玻尔不等式
设H(D)表示单位圆盘D中的解析函数类:={z∈C:|z|<1}。经典玻尔不等式[21]表明,如果f∈H(D)由f(z)=∑n=0∞和zn给出,使得对于z∈D, |f(z)|<1,则∑n=0∞|和|rn≤1,对于r≤13,不能改进常数1/3。常数1/3称为玻尔半径。本文研究了平移盘上解析映射和调和映射的玻尔现象。对于一类解析函数和一类移盘上的调和映射,我们证明了改进玻尔半径的几个尖锐结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信