Endpoint estimates of fractional integral operators when α > n

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Liang Huang , Hanli Tang , Caifeng Zhang
{"title":"Endpoint estimates of fractional integral operators when α > n","authors":"Liang Huang ,&nbsp;Hanli Tang ,&nbsp;Caifeng Zhang","doi":"10.1016/j.bulsci.2024.103569","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove the reverse endpoint estimate of fractional integral operators<span><span><span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></mfrac><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msubsup><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow></mfrac><mo>,</mo><mo>∞</mo></mrow></msup></mrow></msub></math></span></span></span> when <span><math><mi>α</mi><mo>&gt;</mo><mi>n</mi></math></span> for nonnegative function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. And we also show that<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow></mfrac><mo>,</mo><mo>∞</mo></mrow></msup></mrow></msub><mo>≤</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msubsup><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>&gt;</mo><mi>n</mi></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and the constant <span><math><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msubsup></math></span> is sharp. Moreover we establish the limiting weak type behaviors for fractional integral operators when <span><math><mi>α</mi><mo>&gt;</mo><mi>n</mi></math></span>. Specifically, there holds<span><span><span><math><munder><mi>lim</mi><mrow><mi>λ</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>⁡</mo><mi>λ</mi><mo>|</mo><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&lt;</mo><mi>λ</mi><mo>}</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>=</mo><mo>∞</mo><mspace></mspace><mtext> for any </mtext><mn>0</mn><mo>&lt;</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><munder><mi>lim</mi><mrow><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mi>λ</mi><mo>|</mo><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&lt;</mo><mi>λ</mi><mo>}</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>=</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msubsup><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mspace></mspace><mspace></mspace><mtext> for any </mtext><mn>0</mn><mo>≤</mo><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103569"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001878","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove the reverse endpoint estimate of fractional integral operatorsnαvn1αnfL1IαfLnnα, when α>n for nonnegative function fL1(Rn). And we also show thatIαfLnnα,vn1αnfL1, where α>n, 0fLnα1(Rn) and the constant vn1αn is sharp. Moreover we establish the limiting weak type behaviors for fractional integral operators when α>n. Specifically, there holdslimλ0λ|{xRn:Iα(f)(x)<λ}|nαn= for any 0<fL1(Rn),limλ+λ|{xRn:Iα(f)(x)<λ}|nαn=vnnαnfL1 for any 0fLnα1(Rn).
α > n
证明了非负函数f∈L1(Rn)在α>;n时分数阶积分算子snα αvn1−αn‖f‖L1≤‖Iαf‖Lnn−α,∞的反端点估计。并证明了‖Iαf‖Lnn−α,∞≤vn1−αn‖f‖L1,其中α>;n, 0≤f∈Ln−α1(Rn),且常数vn1−αn是尖锐的。此外,我们建立了分数阶积分算子在α>;n。而言,还有holdslimλ→0⁡λ| {x∈Rn:α(f) (x) & lt;λ}| n−α为任何0 & lt; n =∞limλ∈f L1 (Rn)→+∞⁡λ| {x∈Rn:α(f) (x) & lt;λ}| n−αn = vnn−αn为L1为任何0≤f∈Ln−α1 (Rn)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信