{"title":"Smooth linearization of nonautonomous dynamics on the line","authors":"Tian Wang , Zhihua Ren , Jiazhong Yang","doi":"10.1016/j.bulsci.2024.103566","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to study linearization for a sequence of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mo>(</mo><mi>r</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> maps on the line corresponding to a class of non-autonomous dynamics with discrete time. We obtain the following results: (i) if <span><math><mi>r</mi><mo>+</mo><mi>α</mi><mo>></mo><mn>1</mn></math></span>, then there exists a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span> linearization for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span> hyperbolic systems; (ii) for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> hyperbolic systems, then there is a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> linearization for any <em>β</em> with <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></math></span>. Moreover, by presenting a concrete example, we demonstrate that in case (ii), the result is the best. As a special case, we also present a detailed investigation on periodic difference equations in this paper.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103566"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001842","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study linearization for a sequence of maps on the line corresponding to a class of non-autonomous dynamics with discrete time. We obtain the following results: (i) if , then there exists a linearization for hyperbolic systems; (ii) for hyperbolic systems, then there is a linearization for any β with . Moreover, by presenting a concrete example, we demonstrate that in case (ii), the result is the best. As a special case, we also present a detailed investigation on periodic difference equations in this paper.