Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Takao Ohno , Tetsu Shimomura
{"title":"Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces","authors":"Takao Ohno ,&nbsp;Tetsu Shimomura","doi":"10.1016/j.bulsci.2024.103546","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the boundedness of the Hardy–Littlewood maximal operator <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span>, on Musielak-Orlicz spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>Φ</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> over unbounded metric measure spaces as an extension of earlier results, where <em>λ</em> is its modification rate. As an application of the boundedness of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>, we establish a generalization of Sobolev inequalities for the variable Riesz potentials <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>,</mo><mi>τ</mi></mrow></msub><mi>f</mi><mo>,</mo><mspace></mspace><mi>τ</mi><mo>≥</mo><mn>1</mn></math></span>, on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>Φ</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> over unbounded metric measure spaces, where <em>τ</em> is its modification rate. As a corollary, we show the boundedness of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and Sobolev inequalities for <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>,</mo><mi>τ</mi></mrow></msub><mi>f</mi></math></span> for double phase functionals with variable exponents. Our results are new even for the doubling metric measure setting in that the underlying spaces need not be bounded.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103546"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001647","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the boundedness of the Hardy–Littlewood maximal operator Mλ,λ1, on Musielak-Orlicz spaces LΦ(X) over unbounded metric measure spaces as an extension of earlier results, where λ is its modification rate. As an application of the boundedness of Mλ, we establish a generalization of Sobolev inequalities for the variable Riesz potentials Iα(),τf,τ1, on LΦ(X) over unbounded metric measure spaces, where τ is its modification rate. As a corollary, we show the boundedness of Mλ and Sobolev inequalities for Iα(),τf for double phase functionals with variable exponents. Our results are new even for the doubling metric measure setting in that the underlying spaces need not be bounded.
无界度量度量空间上Musielak-Orlicz空间上极大算子的有界性和Sobolev不等式
我们证明了无界度量度量空间上Musielak-Orlicz空间LΦ(X)上Hardy-Littlewood极大算子Mλ,λ≥1的有界性,作为先前结果的推广,其中λ为其修正率。作为Mλ有界性的一个应用,我们在无界度量空间LΦ(X)上建立了变量Riesz势Iα(⋅),τf,τ≥1的Sobolev不等式的推广,其中τ为其修正率。作为推论,我们证明了变指数双相泛函的Iα(⋅),τf的Mλ和Sobolev不等式的有界性。我们的结果是新的,即使对于加倍度量度量设置,其中底层空间不需要有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信