{"title":"Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces","authors":"Takao Ohno , Tetsu Shimomura","doi":"10.1016/j.bulsci.2024.103546","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the boundedness of the Hardy–Littlewood maximal operator <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span>, on Musielak-Orlicz spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>Φ</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> over unbounded metric measure spaces as an extension of earlier results, where <em>λ</em> is its modification rate. As an application of the boundedness of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>, we establish a generalization of Sobolev inequalities for the variable Riesz potentials <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>,</mo><mi>τ</mi></mrow></msub><mi>f</mi><mo>,</mo><mspace></mspace><mi>τ</mi><mo>≥</mo><mn>1</mn></math></span>, on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>Φ</mi></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> over unbounded metric measure spaces, where <em>τ</em> is its modification rate. As a corollary, we show the boundedness of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and Sobolev inequalities for <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>,</mo><mi>τ</mi></mrow></msub><mi>f</mi></math></span> for double phase functionals with variable exponents. Our results are new even for the doubling metric measure setting in that the underlying spaces need not be bounded.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103546"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001647","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the boundedness of the Hardy–Littlewood maximal operator , on Musielak-Orlicz spaces over unbounded metric measure spaces as an extension of earlier results, where λ is its modification rate. As an application of the boundedness of , we establish a generalization of Sobolev inequalities for the variable Riesz potentials , on over unbounded metric measure spaces, where τ is its modification rate. As a corollary, we show the boundedness of and Sobolev inequalities for for double phase functionals with variable exponents. Our results are new even for the doubling metric measure setting in that the underlying spaces need not be bounded.