{"title":"Dynamics near the three-point heteroclinic cycles with saddle-focus","authors":"Duo Hua, Xingbo Liu","doi":"10.1016/j.bulsci.2024.103562","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the bifurcation phenomena of heteroclinic cycles connecting three equilibria in a three-dimensional vector field. Based on Lin's method, we prove the existence of shift dynamics near the three-point heteroclinic cycle, showing the existence of chaotic behavior. Moreover, we present more details about the bifurcation results, such as the existence of a three-point heteroclinic cycle, two-point heteroclinic cycles, homoclinic cycles and 1-periodic orbits bifurcated from the primary three-point heteroclinic cycle. Furthermore, the coexistence of 1-periodic orbit and homoclinic cycle, and the coexistence of 1-periodic orbit and two-point heteroclinic cycle are proved respectively.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103562"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the bifurcation phenomena of heteroclinic cycles connecting three equilibria in a three-dimensional vector field. Based on Lin's method, we prove the existence of shift dynamics near the three-point heteroclinic cycle, showing the existence of chaotic behavior. Moreover, we present more details about the bifurcation results, such as the existence of a three-point heteroclinic cycle, two-point heteroclinic cycles, homoclinic cycles and 1-periodic orbits bifurcated from the primary three-point heteroclinic cycle. Furthermore, the coexistence of 1-periodic orbit and homoclinic cycle, and the coexistence of 1-periodic orbit and two-point heteroclinic cycle are proved respectively.