Dominant and codominant dimensions for quiver representations

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Mohammad Hossein Keshavarz , Yefei Ren , Guodong Zhou
{"title":"Dominant and codominant dimensions for quiver representations","authors":"Mohammad Hossein Keshavarz ,&nbsp;Yefei Ren ,&nbsp;Guodong Zhou","doi":"10.1016/j.bulsci.2024.103563","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> be a module category and <span><math><mi>Q</mi></math></span> a rooted quiver. In this paper, we study the dominant (resp. codominant) dimension of the category <span><math><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> of <span><math><mi>M</mi></math></span>-valued representations of <span><math><mi>Q</mi></math></span>. To do this, we first study injective envelopes and projective covers that play important roles in homological algebra and give explicit formulas for them in the category <span><math><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span>, whose origins go back to the classical representation theory of a finite quiver over a field. Then, by using such descriptions, we compute the dominant (resp. codominant) dimension of <span><math><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span>.</div><div>We show that the dominant dimension of <span><math><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> is at most one for every nonzero module category <span><math><mi>M</mi></math></span> and any right rooted quiver with at least one arrow.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103563"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be a module category and Q a rooted quiver. In this paper, we study the dominant (resp. codominant) dimension of the category Rep(Q,M) of M-valued representations of Q. To do this, we first study injective envelopes and projective covers that play important roles in homological algebra and give explicit formulas for them in the category Rep(Q,M), whose origins go back to the classical representation theory of a finite quiver over a field. Then, by using such descriptions, we compute the dominant (resp. codominant) dimension of Rep(Q,M).
We show that the dominant dimension of Rep(Q,M) is at most one for every nonzero module category M and any right rooted quiver with at least one arrow.
颤振表示的支配维和共支配维
设M为模范畴,Q为根颤振。在本文中,我们研究了显性(代表性)。为此,我们首先研究了在同调代数中起重要作用的范畴Rep(Q,M)中的内射包络和射影覆盖,并给出了它们在范畴Rep(Q,M)中的显式公式,它们的起源可以追溯到域上有限颤振的经典表示理论。然后,通过使用这些描述,我们计算了主导(响应)。Rep(Q,M)的共显性维数。我们证明了Rep(Q,M)的优势维数对每一个非零模范畴M和任何至少有一个箭头的右根箭具都不大于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信