Alessandro Pietro Tucci , Sapia Murgolo , Cristina De Ceglie , Giuseppe Mascolo , Massimo Carmagnani , Paolo Ronco , Massimiliano Bestetti , Silvia Franz
{"title":"Photoelectrocatalytic advanced oxidation of perfluoroalkyl substances in groundwaters of the Veneto Region, Italy","authors":"Alessandro Pietro Tucci , Sapia Murgolo , Cristina De Ceglie , Giuseppe Mascolo , Massimo Carmagnani , Paolo Ronco , Massimiliano Bestetti , Silvia Franz","doi":"10.1016/j.cattod.2025.115205","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectrocatalysis (PEC) was applied for the degradation of PFASs in natural groundwater collected from two wells located in the Veneto Region (Italy) where a massive contamination of the aquifer was discovered. Out of 48 monitored species, up to 9 PFASs were detected. On average, the degradation rate followed the order: PFOA>PFHpA>PFHxA≈PFPeA>PFBA and PFOS>PFHpS; the concentration of PFBS and PFHxS did not change during the tests. The overall PFASs concentration decreased by 63 % in well 1 and by 65 % in well 2. PEC tests of PFOA solutions ([PFOA] = 2 μg/l; [K<sub><em>2</em></sub>SO<sub>4</sub>] = 4 mM] induced the transient formation of PFHpA, followed by PFHxA, PFPeA and PFBA, confirming the reaction pathway consisting of decarboxylation followed by a stepwise losing of CF<sub>2</sub> units, transiently forming shorter chain intermediates. PEC efficiency was compared to photolysis. According to electrical energy per order of magnitude, PEC outperforms conventional photolysis and most of the other advanced oxidation processes reported in literature.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"450 ","pages":"Article 115205"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000239","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrocatalysis (PEC) was applied for the degradation of PFASs in natural groundwater collected from two wells located in the Veneto Region (Italy) where a massive contamination of the aquifer was discovered. Out of 48 monitored species, up to 9 PFASs were detected. On average, the degradation rate followed the order: PFOA>PFHpA>PFHxA≈PFPeA>PFBA and PFOS>PFHpS; the concentration of PFBS and PFHxS did not change during the tests. The overall PFASs concentration decreased by 63 % in well 1 and by 65 % in well 2. PEC tests of PFOA solutions ([PFOA] = 2 μg/l; [K2SO4] = 4 mM] induced the transient formation of PFHpA, followed by PFHxA, PFPeA and PFBA, confirming the reaction pathway consisting of decarboxylation followed by a stepwise losing of CF2 units, transiently forming shorter chain intermediates. PEC efficiency was compared to photolysis. According to electrical energy per order of magnitude, PEC outperforms conventional photolysis and most of the other advanced oxidation processes reported in literature.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.