Approaches for white organic light-emitting diode via solution-processed blue and yellow TADF emitters: Charge balance and host-guest interactions in a single emission layer

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Emmanuel Santos Moraes, José Carlos Germino, Luiz Pereira
{"title":"Approaches for white organic light-emitting diode via solution-processed blue and yellow TADF emitters: Charge balance and host-guest interactions in a single emission layer","authors":"Emmanuel Santos Moraes,&nbsp;José Carlos Germino,&nbsp;Luiz Pereira","doi":"10.1016/j.orgel.2024.107175","DOIUrl":null,"url":null,"abstract":"<div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (233KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span>Although OLEDs are widely employed nowadays for display technology devices, their application for room-lighting illumination remains a challenge due to the cost-effectiveness issues, mainly related to device fabrication. In this sense, the present study investigates the optimization of blue-emitting TADF (DMOC-DPS) and yellow-emitting TADF (TXO-TPA) compounds in solution-processed OLEDs to achieve efficient white light emission in a two-organic layer device. Four different host materials were studied, aiming to balance the charge mobility of holes and electrons. The host materials used include (in %wt.) a 1:1 mixture of mCP and DPEPO (<strong>HOST1</strong>), a 3:2 mixture of PVK and DPEPO (<strong>HOST2</strong>), a 3:2 mixture of PVK and mCP (<strong>HOST3</strong>), and a 3:2 mixture of PVK and butyl-PBD (<strong>HOST4</strong>). The experimental results obtained from the solution-processed OLEDs indicate that DMOC-DPS is predominantly a hole transport material, and hosts with predominantly n-type character, such as <strong>HOST1</strong> and <strong>HOST4</strong>, resulting in the most efficient white-OLEDs by the most balanced charge mobility. With structure optimization, WOLEDs achieved 6.43 % EQE with a brightness of 2621 cd/m<sup>2</sup> (not integrated) and 6.06 % EQE with a brightness of 1986 cd/m<sup>2</sup> for <strong>HOST4</strong> and <strong>HOST1</strong>, respectively. The emission characteristics were influenced by host materials characteristics, with blue and yellow emissions being fine-tuned to produce complementary colors. This study highlights the critical role of charge mobility balance in the emissive layer and demonstrates the potential of independently optimizing blue and yellow TADF components for high-performance WOLEDs suitable for indoor lighting applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"137 ","pages":"Article 107175"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

  1. Download: Download high-res image (233KB)
  2. Download: Download full-size image
Although OLEDs are widely employed nowadays for display technology devices, their application for room-lighting illumination remains a challenge due to the cost-effectiveness issues, mainly related to device fabrication. In this sense, the present study investigates the optimization of blue-emitting TADF (DMOC-DPS) and yellow-emitting TADF (TXO-TPA) compounds in solution-processed OLEDs to achieve efficient white light emission in a two-organic layer device. Four different host materials were studied, aiming to balance the charge mobility of holes and electrons. The host materials used include (in %wt.) a 1:1 mixture of mCP and DPEPO (HOST1), a 3:2 mixture of PVK and DPEPO (HOST2), a 3:2 mixture of PVK and mCP (HOST3), and a 3:2 mixture of PVK and butyl-PBD (HOST4). The experimental results obtained from the solution-processed OLEDs indicate that DMOC-DPS is predominantly a hole transport material, and hosts with predominantly n-type character, such as HOST1 and HOST4, resulting in the most efficient white-OLEDs by the most balanced charge mobility. With structure optimization, WOLEDs achieved 6.43 % EQE with a brightness of 2621 cd/m2 (not integrated) and 6.06 % EQE with a brightness of 1986 cd/m2 for HOST4 and HOST1, respectively. The emission characteristics were influenced by host materials characteristics, with blue and yellow emissions being fine-tuned to produce complementary colors. This study highlights the critical role of charge mobility balance in the emissive layer and demonstrates the potential of independently optimizing blue and yellow TADF components for high-performance WOLEDs suitable for indoor lighting applications.

Abstract Image

通过溶液处理的蓝色和黄色TADF发射器制备白色有机发光二极管的方法:单发射层中的电荷平衡和主客体相互作用
下载:下载高清图片下载:下载全尺寸图片尽管oled如今已广泛应用于显示技术设备,但由于成本效益问题(主要与设备制造有关),其在室内照明中的应用仍然是一个挑战。在此意义上,本研究探讨了溶液处理oled中蓝色发射TADF (DMOC-DPS)和黄色发射TADF (TXO-TPA)化合物的优化,以实现双有机层器件中高效的白光发射。研究了四种不同的主体材料,旨在平衡空穴和电子的电荷迁移率。使用的宿主材料包括(以%wt计)1:1的mCP和DPEPO混合物(HOST1), 3:2的PVK和DPEPO混合物(HOST2), 3:2的PVK和mCP混合物(HOST3),以及3:2的PVK和丁基pbd混合物(HOST4)。溶液处理oled的实验结果表明,DMOC-DPS主要是一种空穴输运材料,而HOST1和HOST4等寄主则主要是n型寄主,以最平衡的电荷迁移率生成效率最高的白色oled。经过结构优化,HOST4和HOST1的EQE分别达到6.43%和6.06%,亮度为2621 cd/m2(未集成),亮度为1986 cd/m2。发射特性受主体材料特性的影响,蓝色和黄色的发射被微调以产生互补色。这项研究强调了电荷迁移平衡在发射层中的关键作用,并展示了独立优化蓝色和黄色TADF组件用于适合室内照明应用的高性能WOLEDs的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信