Thermophysical properties of single crystals and ceramics based on thallium and silver halides

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ivan Yuzhakov , Dmitrii Salimgareev , Alexander Lvov , Alexander Shmygalev , Alexei Rudenko , Anastasia Yuzhakova , Liya Zhukova
{"title":"Thermophysical properties of single crystals and ceramics based on thallium and silver halides","authors":"Ivan Yuzhakov ,&nbsp;Dmitrii Salimgareev ,&nbsp;Alexander Lvov ,&nbsp;Alexander Shmygalev ,&nbsp;Alexei Rudenko ,&nbsp;Anastasia Yuzhakova ,&nbsp;Liya Zhukova","doi":"10.1016/j.mtla.2024.102326","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature dependences of electrical conductivity, heat capacity and heat diffusivity in the range of 30–250 °C were studied for single crystals and optical ceramics based on metal halides of the TlBr<sub>0.46</sub>I<sub>0.54</sub> – AgI, TlCl<sub>0.74</sub>Br<sub>0.26</sub> – AgI, TlBr<sub>0.46</sub>I<sub>0.54</sub> – AgCl<sub>0.25</sub>Br<sub>0.75</sub>, TlCl<sub>0.74</sub>Br<sub>0.26</sub> – AgCl<sub>0.25</sub>Br<sub>0.75</sub> systems. The properties of superionic conductors were discovered in materials with ionic bonds Ag – I, Tl – I with the strongest characteristics in the TlBr<sub>0.46</sub>I<sub>0.54</sub> – AgCl<sub>0.25</sub>Br<sub>0.75</sub> system's compounds. The influence of dissimilar ions number and their proportion in the crystal lattice was revealed by calculating the diffusion coefficients of silver and analyzing the conductivity curves. Heat capacity and thermal conductivity coefficients showed the least susceptibility to the temperature influence in solid solutions with a large number of dissimilar elements TlBr<sub>0.46</sub>I<sub>0.54</sub> – AgCl<sub>0.25</sub>Br<sub>0.75</sub>, TlCl<sub>0.74</sub>Br<sub>0.26</sub> – AgCl<sub>0.25</sub>Br<sub>0.75</sub>. The obtained dependencies determine the areas of materials application and allow predicting the technological modes of their processing.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102326"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924003235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature dependences of electrical conductivity, heat capacity and heat diffusivity in the range of 30–250 °C were studied for single crystals and optical ceramics based on metal halides of the TlBr0.46I0.54 – AgI, TlCl0.74Br0.26 – AgI, TlBr0.46I0.54 – AgCl0.25Br0.75, TlCl0.74Br0.26 – AgCl0.25Br0.75 systems. The properties of superionic conductors were discovered in materials with ionic bonds Ag – I, Tl – I with the strongest characteristics in the TlBr0.46I0.54 – AgCl0.25Br0.75 system's compounds. The influence of dissimilar ions number and their proportion in the crystal lattice was revealed by calculating the diffusion coefficients of silver and analyzing the conductivity curves. Heat capacity and thermal conductivity coefficients showed the least susceptibility to the temperature influence in solid solutions with a large number of dissimilar elements TlBr0.46I0.54 – AgCl0.25Br0.75, TlCl0.74Br0.26 – AgCl0.25Br0.75. The obtained dependencies determine the areas of materials application and allow predicting the technological modes of their processing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信