Sergio Laso , Pablo Rodríguez , Juan Luis Herrera , Javier Berrocal , Juan M. Murillo
{"title":"Energy consumption and workload prediction for edge nodes in the Computing Continuum","authors":"Sergio Laso , Pablo Rodríguez , Juan Luis Herrera , Javier Berrocal , Juan M. Murillo","doi":"10.1016/j.suscom.2025.101088","DOIUrl":null,"url":null,"abstract":"<div><div>The Computing Continuum paradigm provides developers with a distributed infrastructure for deploying applications through the network, improving performance and energy consumption. However, to maintain applications’ efficiency, their deployment in the Computing Continuum has to be continuously adapted to the varying load of different nodes of the network. In practice, existing support frameworks allow developers to automatically identify how to deploy applications based on the infrastructure status. However, as the application takes time to be deployed, the chosen deployment is outdated once it is applied through the network, as workloads change over time. To address this practical engineering challenge and plan deployments that foresee changes in energy consumption and workload, predictive solutions are needed. To fulfill this need, this work presents the Microservice Energy consumption and Workload Forecaster (MEWF), a prediction system that leverages artificial intelligence techniques to precisely predict CPU usage and energy consumption in varying circumstances. Our practical evaluation over multiple real microservices shows that MEWF improves prediction precision by up to 55% w.r.t. state-of-the-art benchmarks, enabling efficient resource management and demonstrating significant value for real-world deployments.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101088"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Computing Continuum paradigm provides developers with a distributed infrastructure for deploying applications through the network, improving performance and energy consumption. However, to maintain applications’ efficiency, their deployment in the Computing Continuum has to be continuously adapted to the varying load of different nodes of the network. In practice, existing support frameworks allow developers to automatically identify how to deploy applications based on the infrastructure status. However, as the application takes time to be deployed, the chosen deployment is outdated once it is applied through the network, as workloads change over time. To address this practical engineering challenge and plan deployments that foresee changes in energy consumption and workload, predictive solutions are needed. To fulfill this need, this work presents the Microservice Energy consumption and Workload Forecaster (MEWF), a prediction system that leverages artificial intelligence techniques to precisely predict CPU usage and energy consumption in varying circumstances. Our practical evaluation over multiple real microservices shows that MEWF improves prediction precision by up to 55% w.r.t. state-of-the-art benchmarks, enabling efficient resource management and demonstrating significant value for real-world deployments.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.