Distributive properties of division points and discriminants of Drinfeld modules

IF 0.8 2区 数学 Q2 MATHEMATICS
Ernst-Ulrich Gekeler
{"title":"Distributive properties of division points and discriminants of Drinfeld modules","authors":"Ernst-Ulrich Gekeler","doi":"10.1016/j.jalgebra.2024.12.016","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new notion of distribution and derived distribution of rank <span><math><mi>r</mi><mo>∈</mo><mi>N</mi></math></span> for a global function field <em>K</em> with a distinguished place ∞. It allows to describe the relations between division points, isogenies, and discriminants both for a fixed Drinfeld module of rank <em>r</em> for the above data, or for the corresponding modular forms.</div><div>We introduce and study three basic distributions with values in <span><math><mi>Q</mi></math></span>, in the group <span><math><mi>μ</mi><mo>(</mo><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of roots of unity in the algebraic closure <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span> of <em>K</em>, and in the group <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> of 1-units of the completed algebraic closure <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, respectively.</div><div>There result product formulas for division points and discriminants that encompass known results (e.g. analogues of Wallis' formula for <span><math><msup><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mi>ı</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> in the rank-1 case, of Jacobi's formula <span><math><mi>Δ</mi><mo>=</mo><msup><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mi>ı</mi><mo>)</mo></mrow><mrow><mn>12</mn></mrow></msup><mi>q</mi><mo>∏</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mn>24</mn></mrow></msup></math></span> in the rank-2 case, and similar boundary expansions for <span><math><mi>r</mi><mo>&gt;</mo><mn>2</mn></math></span>) and several new ones: the definition of a canonical discriminant for the most general case of Drinfeld modules and the description of the sizes of division and discriminant forms.</div><div>In the now classical case where <span><math><mo>(</mo><mi>K</mi><mo>,</mo><mo>∞</mo><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, 2 or 3, we give explicit values for the logarithms of such forms.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"667 ","pages":"Pages 165-202"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006896","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new notion of distribution and derived distribution of rank rN for a global function field K with a distinguished place ∞. It allows to describe the relations between division points, isogenies, and discriminants both for a fixed Drinfeld module of rank r for the above data, or for the corresponding modular forms.
We introduce and study three basic distributions with values in Q, in the group μ(K) of roots of unity in the algebraic closure K of K, and in the group U(1)(C) of 1-units of the completed algebraic closure C of K, respectively.
There result product formulas for division points and discriminants that encompass known results (e.g. analogues of Wallis' formula for (2πı)2 in the rank-1 case, of Jacobi's formula Δ=(2πı)12q(1qn)24 in the rank-2 case, and similar boundary expansions for r>2) and several new ones: the definition of a canonical discriminant for the most general case of Drinfeld modules and the description of the sizes of division and discriminant forms.
In the now classical case where (K,)=(Fq(T),) and r=1, 2 or 3, we give explicit values for the logarithms of such forms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信