Luoyu Gao , Yanqi Shi , Zhenjiang Li, Ziqi Liu, Min Zhang, Yue Xu, Xin Zou, Xin Yuan, Yongzhu Hu, Kai Guo
{"title":"Endogenous base phosphine/dimethyl carbonate catalyzed depolymerization of poly(ethylene terephthalate)","authors":"Luoyu Gao , Yanqi Shi , Zhenjiang Li, Ziqi Liu, Min Zhang, Yue Xu, Xin Zou, Xin Yuan, Yongzhu Hu, Kai Guo","doi":"10.1016/j.cattod.2025.115203","DOIUrl":null,"url":null,"abstract":"<div><div>Solvolysis of postconsumer poly(ethylene terephthalate) (PET) into monomeric feedstocks that can be recycled contributes value-added strategy to waste plastic management. Chemical route for PET recycling with sets of diols, diamines, and amino alcohols as the solvolytic reagents by endogenous basic ionic pair phosphonium organocatalyst was established. Methylation of tertiary phosphine with dimethyl carbonate produced <strong>q</strong>uaternary <strong>p</strong>hosphonium <strong>m</strong>ethyl <strong>c</strong>arbonate (QPMC) catalyst of strong basic character. QPMC depolymerized PET by virtually complete conversion with 78 % up isolated yield of monomers under optimal reaction conditions of 160 °C, 2 mol% catalyst loading, and 4 h. Catalytic solvolysis mechanism with ethylene glycol was probed by NMR titrations where methyl carbonate anion coordinated to hydroxyl of ethylene glycol by H-bonding, rather than H-abstraction by the basic methyl carbonate anion, was validated.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"450 ","pages":"Article 115203"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000215","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Solvolysis of postconsumer poly(ethylene terephthalate) (PET) into monomeric feedstocks that can be recycled contributes value-added strategy to waste plastic management. Chemical route for PET recycling with sets of diols, diamines, and amino alcohols as the solvolytic reagents by endogenous basic ionic pair phosphonium organocatalyst was established. Methylation of tertiary phosphine with dimethyl carbonate produced quaternary phosphonium methyl carbonate (QPMC) catalyst of strong basic character. QPMC depolymerized PET by virtually complete conversion with 78 % up isolated yield of monomers under optimal reaction conditions of 160 °C, 2 mol% catalyst loading, and 4 h. Catalytic solvolysis mechanism with ethylene glycol was probed by NMR titrations where methyl carbonate anion coordinated to hydroxyl of ethylene glycol by H-bonding, rather than H-abstraction by the basic methyl carbonate anion, was validated.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.